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𝒟 = {(x(i), y(i)) ∈ ℝn0 × ℝnd}N

i=1Given a finite data set 

sampled from an unknown probability distribution 𝒫(x, y)
1) Choose a parameterized hypothesis class of functions

hθ : ℝn0 → ℝnd

2) Use an optimization algorithm to find optimal predictor 

θ ∈ (Ω = ℝD)

of labels on unseen data drawn from 𝒫(x, y)
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MOTIVATING QUESTION:
Given a parameterized function class for learning, how well 

does its parameter space model the function class?

WHY WE SHOULD CARE:
(Empirical) loss depends only on the function (and the 
sample data), BUT optimization algorithms proceed in 

parameter space
Function redundancy or inhomogeneity will bias 

optimization algorithms
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network 
functions

of architecture

ReLU(x) := max{0,x}

Modern activation function of choice

(n0, n1, …, nd)

Finite 
piecewise-
linear (PL) 
functions
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RELU NEURAL NETWORKS
Fi = σ ∘ Ai : ℝni−1 → ℝni

Co-oriented hyperplane arrangement “Bent” hyperplane arrangement
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RELU NEURAL NETWORKS

For any fixed architecture of depth at least 2, parameter 
space is a highly redundant and inhomogeneous 

proxy for the true hypothesis class

I believe this is a feature, not a bug
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PARAMETER SPACE SYMMETRIES FOR RELU 
NETWORKS

Parameter
Space

Function
Space

ρ : ℝD → PL(ℝn0 → ℝnd)
Have a realization map

• Not injective (“Many to one”)
• Positive-dimensional spaces of symmetries



HISTORY/RELATED WORK:

Fefferman-Markel, Albertini-Sontag (1990’s): Parameters of a multilayer 
perceptron with sigmoidal activation can be recovered up to finite known symmetries 

Armenta-Jodoin, et al. (’18): Quiver representation theory (framework for 
understanding moduli spaces and global symmetries in general (for arbitrary activation 
functions)

Kording-Rolnick, Phuong-Lampert (’20): For ReLU networks, give geometric 
conditions under which parameters are obtainable up to known global symmetries
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Lemma:  The function space of a ReLU network of 
architecture  has dimension at most(n0, …, nd)

D′ :=
d−1

∑
i=0

(ni + 1)ni+1 −
d−1

∑
i=1

ni

D
(Parametric 
dimension)

(# of hidden 
neurons)

Theoretical
upper bound
on functional 
dimension
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Local, near a parameter

θ0 ∈ (Ω = ℝD) Fθ0
: ℝn0 → ℝnd

Gives rise to

Fix
Z = {z1, …, zN} ∈ ℝn0

θ0

𝒥z1

Tθ0 (ℝD): Tangent space at θ0

: (Span of) directions
in which we can perturb near 

to change the value of 
for at least one point in Z

θ0 Fθ

𝒥Z

𝒥zN

…
𝒥z2
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FORMALLY: 
Fix

EvZ : ℝD Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at       relative to Z      :  Rank Jθ(EvZ) |θ0
= ( ∂EvZ

∂θ )
θ0

Sup
Z

θ0

This is the (local) functional dimension at θ0

Z = {z1, …, zk} ⊆ ℝn0
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TECHNICAL POINTS:
Choosing  to contain  points in each linear region 
guarantees that we achieve the supremum of the rank of 

 over all finite sets 

Z n0 + 1

Jθ(EvZ) |θ0
Z

Guaranteeing that a batch  satisfies the above assumptions 
is computationally challenging

Z

The placement of the batch  relative to the decomposition 
of the domain into linear regions is highly relevant

Z
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WHY CARE ABOUT (BATCH) FUNCTIONAL DIMENSION?

Low functional dimension

⇒
Global minima of loss landscape corresponding to parameters with low 

functional dimension should be flat in more directions*

*This is a heuristic; not a theorem yet

High local redundancy
=
=

Low complexity



LOW FUN. DIM.  HIGH-DIMENSIONAL LEVEL SETS⇒

“Level set” for function

Level set for loss
⊆

Direction(s) in which
 function can change



FLATTER GLOBAL MINIMA OF THE LOSS FUNCTION ARE PREFERRED

(Li-Wang-Arora, ’22): What happens after SGD reaches zero loss? 
A mathematical framework

(Blanc-Gupta-Valiant-Valiant, ’20): Implicit regularization for deep 
neural networks driven by an Ornstein-Uhlenbeck like process 

(Partial list: please help!)

(Ma-Ying, ’22): On Linear Stability of SGD and 
Input-Smoothness of Neural Networks

(Y. Cooper, ‘18): The loss landscape of overparameterized 
neural networks
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EXPERIMENTS
Width = 5,10,15, Depth = 3,4,5,6

Image credit: D. Rolnick

# of points in each batch: 
 |Z | = m = 2D′ 

Batch not guaranteed to achieve sup, 
so APPROXIMATE functional 

dimension
20K networks in each run 

Weights sampled i.i.d. w/ variance 
2/fan-in, bias w/ variance 0.01 

Black dot represents percentage of 
sample networks achieving the 

theoretical upper bound 



TAKE-AWAYS:

 with width,  with depth↓ ↑

Image credit: D. Rolnick

VARIANCE:

 with width,  with depth↑ ↑

MODES:
Multimodal, especially at  width, 

 depth 
Modes appear to be separated 

(roughly) by width

↑
↓

EXPECTED DEFICIT FROM UPPER BOUND:



THEORETICAL RESULTS:



THEORETICAL RESULTS:

For every architecture, a positive measure subset of 
parameter space fails to achieve the theoretical upper 

bound on functional dimension



THEORETICAL RESULTS:

For every architecture, a positive measure subset of 
parameter space fails to achieve the theoretical upper 

bound on functional dimension

For every architecture whose hidden layers are at least as wide 
as the input layer, a positive measure subset of parameter 

space achieves the upper bound on functional dimension*

*Conjecture (90% theorem) 
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MECHANISMS INSURING UPPER BOUND IS 
ACHIEVED*: 

*Conjecture (90% Theorem)

Proof sketch: 

Kording-Rolnick proved: If every pair of bent hyperplanes from every pair of adjacent 
layers intersects transversely (with expected dimension), then the parameters can be 

recovered up to permutation and positive scaling

We give a construction ensuring the Kording-Rolnick condition is satisfied

Remark:  The construction is fiddly! I don’t have a great sense of how often the transverse 
pairwise intersection condition is satisfied in general, especially for deep networks.



MECHANISMS INSURING UPPER BOUND IS 
ACHIEVED*: 

Illustration of construction
For architecture (2,5,3,3)



FURTHER QUESTIONS:



FURTHER QUESTIONS:

How does functional dimension evolve during training?



FURTHER QUESTIONS:

How does functional dimension evolve during training?

How about in the overparameterized setting?



FURTHER QUESTIONS:

How does functional dimension evolve during training?

How about in the overparameterized setting?

Better understanding of the mechanisms affecting 
(effective) functional dimension?



FURTHER QUESTIONS:

How does functional dimension evolve during training?

How about in the overparameterized setting?

Better understanding of the mechanisms affecting 
(effective) functional dimension?

Dependence of (batch) functional dimension on 
symmetries/geometry of data-generating distribution?



THANK YOU FOR BEING HERE!


