
FUNCTIONAL DIMENSION OF RELU
NEURAL NETWORKS
Boston Symmetry Day
April 7, 2023

J. Elisenda Grigsby
Boston College

Joint work with K. Lindsey, R. Meyerhoff, and C. Wu:
“Functional dimension of feedforward ReLU neural networks,”
arXiv: math.MG/2209.04036

Joint work with K. Lindsey, D. Rolnick: “Hidden symmetries of
ReLU networks,” (to appear)

BASED ON:

https://arxiv.org/abs/2209.04036

SUPERVISED LEARNING PROBLEM:

SUPERVISED LEARNING PROBLEM:
𝒟 = {(x(i), y(i)) ∈ ℝn0 × ℝnd}N

i=1Given a finite data set

sampled from an unknown probability distribution 𝒫(x, y)

SUPERVISED LEARNING PROBLEM:
𝒟 = {(x(i), y(i)) ∈ ℝn0 × ℝnd}N

i=1Given a finite data set

sampled from an unknown probability distribution 𝒫(x, y)
1) Choose a parameterized hypothesis class of functions

hθ : ℝn0 → ℝnd θ ∈ (Ω = ℝD)

SUPERVISED LEARNING PROBLEM:
𝒟 = {(x(i), y(i)) ∈ ℝn0 × ℝnd}N

i=1Given a finite data set

sampled from an unknown probability distribution 𝒫(x, y)
1) Choose a parameterized hypothesis class of functions

hθ : ℝn0 → ℝnd

2) Use an optimization algorithm to find optimal predictor

θ ∈ (Ω = ℝD)

of labels on unseen data drawn from 𝒫(x, y)

MOTIVATING QUESTION:

MOTIVATING QUESTION:
Given a parameterized function class for learning, how well

does its parameter space model the function class?

MOTIVATING QUESTION:
Given a parameterized function class for learning, how well

does its parameter space model the function class?

WHY WE SHOULD CARE:

MOTIVATING QUESTION:
Given a parameterized function class for learning, how well

does its parameter space model the function class?

WHY WE SHOULD CARE:
(Empirical) loss depends only on the function (and the
sample data), BUT optimization algorithms proceed in

parameter space

MOTIVATING QUESTION:
Given a parameterized function class for learning, how well

does its parameter space model the function class?

WHY WE SHOULD CARE:
(Empirical) loss depends only on the function (and the
sample data), BUT optimization algorithms proceed in

parameter space
Function redundancy or inhomogeneity will bias

optimization algorithms

RELU NEURAL NETWORKS

RELU NEURAL NETWORKS

Image credit: M. Nielsen, Neural networks and deep learning

RELU NEURAL NETWORKS

ℝn0 ℝnd

Image credit: M. Nielsen, Neural networks and deep learning

RELU NEURAL NETWORKS

ℝn0 ℝndℝn1 ℝn2 ℝn3

Image credit: M. Nielsen, Neural networks and deep learning

RELU NEURAL NETWORKS

ℝn0 ℝndℝn1 ℝn2 ℝn3

Architecture (n0, n1, …, nd)

Image credit: M. Nielsen, Neural networks and deep learning

ReLU(x) := max{0,x}

Modern activation function of choice

RELU NEURAL NETWORKS

ℝn0 ℝndℝn1 ℝn2 ℝn3

Architecture (n0, n1, …, nd)

Image credit: M. Nielsen, Neural networks and deep learning

ReLU(x) := max{0,x}

Modern activation function of choice

Arora-Basu-Mianjy-Mukherjee (ICLR ’18):

RELU NEURAL NETWORKS

ℝn0 ℝndℝn1 ℝn2 ℝn3

Architecture (n0, n1, …, nd)

Image credit: M. Nielsen, Neural networks and deep learning

ReLU
neural

network
functions

Finite
piecewise-
linear (PL)
functions

ReLU(x) := max{0,x}

Modern activation function of choice

=

Arora-Basu-Mianjy-Mukherjee (ICLR ’18):

RELU NEURAL NETWORKS

ℝn0 ℝndℝn1 ℝn2 ℝn3

Architecture (n0, n1, …, nd)

Image credit: M. Nielsen, Neural networks and deep learning

ReLU neural
network
functions

of architecture

ReLU(x) := max{0,x}

Modern activation function of choice

(n0, n1, …, nd)

Finite
piecewise-
linear (PL)
functions

↪
?????

RELU NEURAL NETWORKS

RELU NEURAL NETWORKS
Fi = σ ∘ Ai : ℝni−1 → ℝni

RELU NEURAL NETWORKS
Fi = σ ∘ Ai : ℝni−1 → ℝni

Co-oriented hyperplane arrangement

RELU NEURAL NETWORKS
Fi = σ ∘ Ai : ℝni−1 → ℝni

Co-oriented hyperplane arrangement “Bent” hyperplane arrangement

RELU NEURAL NETWORKS

RELU NEURAL NETWORKS

For any fixed architecture of depth at least 2, parameter
space is a highly redundant and inhomogeneous

proxy for the true hypothesis class

RELU NEURAL NETWORKS

For any fixed architecture of depth at least 2, parameter
space is a highly redundant and inhomogeneous

proxy for the true hypothesis class

I believe this is a feature, not a bug

OUTLINE:

1. Parameter space Function space for ReLU networks

2. (Effective) functional dimension

3. Theoretical and experimental results

≠

OUTLINE:

1. Parameter space Function space for ReLU networks

2. (Effective) functional dimension

3. Theoretical and experimental results

≠

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Parameter
Space for

Architecture
(n0, n1, …, nd−1, nd)

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Parameter
Space for

Architecture
(n0, n1, …, nd−1, nd)

=

ℝD
D =

d−1

∑
i=0

(ni + 1)ni+1where

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Parameter
Space for

Architecture
(n0, n1, …, nd−1, nd)

≠
=

ℝD

Function
Space for

Architecture
(n0, n1, …, nd−1, nd)

D =
d−1

∑
i=0

(ni + 1)ni+1where

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Parameter
Space for

Architecture
(n0, n1, …, nd−1, nd)

≠
⊆

PL(ℝn0 → ℝnd)

=

ℝD

Function
Space for

Architecture
(n0, n1, …, nd−1, nd)

D =
d−1

∑
i=0

(ni + 1)ni+1where

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Have a realization map

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

ρ : ℝD → PL(ℝn0 → ℝnd)
Have a realization map

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Parameter
Space

Function
Space

ρ : ℝD → PL(ℝn0 → ℝnd)
Have a realization map

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Parameter
Space

Function
Space

ρ : ℝD → PL(ℝn0 → ℝnd)
Have a realization map

• Not injective (“Many to one”)

PARAMETER SPACE SYMMETRIES FOR RELU
NETWORKS

Parameter
Space

Function
Space

ρ : ℝD → PL(ℝn0 → ℝnd)
Have a realization map

• Not injective (“Many to one”)
• Positive-dimensional spaces of symmetries

HISTORY/RELATED WORK:

Fefferman-Markel, Albertini-Sontag (1990’s): Parameters of a multilayer
perceptron with sigmoidal activation can be recovered up to finite known symmetries

Armenta-Jodoin, et al. (’18): Quiver representation theory (framework for
understanding moduli spaces and global symmetries in general (for arbitrary activation
functions)

Kording-Rolnick, Phuong-Lampert (’20): For ReLU networks, give geometric
conditions under which parameters are obtainable up to known global symmetries

WELL-KNOWN GLOBALLY-DEFINED
SYMMETRIES (CF. KORDING-ROLNICK, PHUONG-LAMPERT):

WELL-KNOWN GLOBALLY-DEFINED
SYMMETRIES (CF. KORDING-ROLNICK, PHUONG-LAMPERT):

PERMUTATION:

WELL-KNOWN GLOBALLY-DEFINED
SYMMETRIES (CF. KORDING-ROLNICK, PHUONG-LAMPERT):

PERMUTATION: 1

2

3

3

1

2

WELL-KNOWN GLOBALLY-DEFINED
SYMMETRIES (CF. KORDING-ROLNICK, PHUONG-LAMPERT):

PERMUTATION: 1

2

3

3

1

2

Discrete, aka
0-dimensional

WELL-KNOWN GLOBALLY-DEFINED
SYMMETRIES (CF. KORDING-ROLNICK, PHUONG-LAMPERT):

PERMUTATION:

POSITIVE SCALING:

1

2

3

3

1

2

Discrete, aka
0-dimensional

WELL-KNOWN GLOBALLY-DEFINED
SYMMETRIES (CF. KORDING-ROLNICK, PHUONG-LAMPERT):

PERMUTATION:

POSITIVE SCALING:

1

2

3

3

1

2

Discrete, aka
0-dimensional

⋅ λ ⋅
1
λ

WELL-KNOWN GLOBALLY-DEFINED
SYMMETRIES (CF. KORDING-ROLNICK, PHUONG-LAMPERT):

PERMUTATION:

POSITIVE SCALING:

1

2

3

3

1

2

Discrete, aka
0-dimensional

Positive-
dimensional ⋅ λ ⋅

1
λ

EASY CONSEQUENCE:

EASY CONSEQUENCE:

Lemma: The function space of a ReLU network of
architecture has dimension at most(n0, …, nd)

D′ :=
d−1

∑
i=0

(ni + 1)ni+1 −
d−1

∑
i=1

ni

EASY CONSEQUENCE:

Lemma: The function space of a ReLU network of
architecture has dimension at most(n0, …, nd)

D′ :=
d−1

∑
i=0

(ni + 1)ni+1 −
d−1

∑
i=1

ni

D
(Parametric
dimension)

(# of hidden
neurons)

EASY CONSEQUENCE:

Lemma: The function space of a ReLU network of
architecture has dimension at most(n0, …, nd)

D′ :=
d−1

∑
i=0

(ni + 1)ni+1 −
d−1

∑
i=1

ni

D
(Parametric
dimension)

(# of hidden
neurons)

Theoretical
upper bound
on functional
dimension

OUTLINE:

1. Parameter space Function space for ReLU networks

2. (Effective) functional dimension

3. Theoretical and experimental results

≠

FUNCTIONAL DIMENSION

FUNCTIONAL DIMENSION
Local, near a parameter

FUNCTIONAL DIMENSION
Local, near a parameter

θ0 ∈ (Ω = ℝD)

FUNCTIONAL DIMENSION
Local, near a parameter

θ0 ∈ (Ω = ℝD) Fθ0
: ℝn0 → ℝnd

Gives rise to

FUNCTIONAL DIMENSION
Local, near a parameter

θ0 ∈ (Ω = ℝD) Fθ0
: ℝn0 → ℝnd

Gives rise to

Fix
Z = {z1, …, zN} ∈ ℝn0

FUNCTIONAL DIMENSION
Local, near a parameter

θ0 ∈ (Ω = ℝD) Fθ0
: ℝn0 → ℝnd

Gives rise to

Fix
Z = {z1, …, zN} ∈ ℝn0

θ0

𝒥z1

Tθ0 (ℝD): Tangent space at θ0

𝒥zN

…
𝒥z2

FUNCTIONAL DIMENSION
Local, near a parameter

θ0 ∈ (Ω = ℝD) Fθ0
: ℝn0 → ℝnd

Gives rise to

Fix
Z = {z1, …, zN} ∈ ℝn0

θ0

𝒥z1

Tθ0 (ℝD): Tangent space at θ0

: (Span of) directions
in which we can perturb near

to change the value of
for at least one point in Z

θ0 Fθ

𝒥Z

𝒥zN

…
𝒥z2

FORMALLY:

FORMALLY:
Fix Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

Mk×nd
EvZ : ℝD

Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

Mk×nd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

EvZ : ℝD
Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

EvZ : ℝD
Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at relative to Z : θ0

EvZ : ℝD
Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at relative to Z : θ0

EvZ : ℝD

Rank Jθ(EvZ) |θ0
= (∂EvZ

∂θ)
θ0

Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at relative to Z :

Dimension of space of tangent vectors at impacting the value of on Z

θ0

θ0 Fθ

EvZ : ℝD

Rank Jθ(EvZ) |θ0
= (∂EvZ

∂θ)
θ0

Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at relative to Z :

“Batch” functional dimension for “Batch” Z

θ0

EvZ : ℝD

Rank Jθ(EvZ) |θ0
= (∂EvZ

∂θ)
θ0

Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

EvZ : ℝD Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at relative to Z : Rank Jθ(EvZ) |θ0
= (∂EvZ

∂θ)
θ0

Sup
Z

θ0

Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

EvZ : ℝD Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at relative to Z : Rank Jθ(EvZ) |θ0
= (∂EvZ

∂θ)
θ0

Dimension of space of tangent vectors at impacting the value of anywhere

Sup
Z

θ0

θ0 Fθ

Z = {z1, …, zk} ⊆ ℝn0

FORMALLY:
Fix

EvZ : ℝD Mk×nd ℝknd

θ

∈

Fθ(z1)
⋮

Fθ(zk)

Vectorize (unroll)

Functional dimension at relative to Z : Rank Jθ(EvZ) |θ0
= (∂EvZ

∂θ)
θ0

Sup
Z

θ0

This is the (local) functional dimension at θ0

Z = {z1, …, zk} ⊆ ℝn0

TECHNICAL POINTS:

TECHNICAL POINTS:
Choosing to contain points in each linear region
guarantees that we achieve the supremum of the rank of

 over all finite sets

Z n0 + 1

Jθ(EvZ) |θ0
Z

TECHNICAL POINTS:
Choosing to contain points in each linear region
guarantees that we achieve the supremum of the rank of

 over all finite sets

Z n0 + 1

Jθ(EvZ) |θ0
Z

Guaranteeing that a batch satisfies the above assumptions
is computationally challenging

Z

TECHNICAL POINTS:
Choosing to contain points in each linear region
guarantees that we achieve the supremum of the rank of

 over all finite sets

Z n0 + 1

Jθ(EvZ) |θ0
Z

Guaranteeing that a batch satisfies the above assumptions
is computationally challenging

Z

The placement of the batch relative to the decomposition
of the domain into linear regions is highly relevant

Z

WHY CARE ABOUT (BATCH) FUNCTIONAL DIMENSION?

WHY CARE ABOUT (BATCH) FUNCTIONAL DIMENSION?

Low functional dimension

⇒
Global minima of loss landscape corresponding to parameters with low

functional dimension should be flat in more directions*

*This is a heuristic; not a theorem yet

High local redundancy
=
=

Low complexity

LOW FUN. DIM. HIGH-DIMENSIONAL LEVEL SETS⇒

“Level set” for function

Level set for loss
⊆

Direction(s) in which
 function can change

FLATTER GLOBAL MINIMA OF THE LOSS FUNCTION ARE PREFERRED

(Li-Wang-Arora, ’22): What happens after SGD reaches zero loss?
A mathematical framework

(Blanc-Gupta-Valiant-Valiant, ’20): Implicit regularization for deep
neural networks driven by an Ornstein-Uhlenbeck like process

(Partial list: please help!)

(Ma-Ying, ’22): On Linear Stability of SGD and
Input-Smoothness of Neural Networks

(Y. Cooper, ‘18): The loss landscape of overparameterized
neural networks

OUTLINE:

1. Parameter space Function space for ReLU networks

2. (Effective) functional dimension

3. Theoretical and experimental results

≠

EXPERIMENTS
Width = 5,10,15, Depth = 3,4,5,6

Image credit: D. Rolnick

of points in each batch:
 |Z | = m = 2D′

Batch not guaranteed to achieve sup,
so APPROXIMATE functional

dimension
20K networks in each run

Weights sampled i.i.d. w/ variance
2/fan-in, bias w/ variance 0.01

Black dot represents percentage of
sample networks achieving the

theoretical upper bound

TAKE-AWAYS:

 with width, with depth↓ ↑

Image credit: D. Rolnick

VARIANCE:

 with width, with depth↑ ↑

MODES:
Multimodal, especially at width,

 depth
Modes appear to be separated

(roughly) by width

↑
↓

EXPECTED DEFICIT FROM UPPER BOUND:

THEORETICAL RESULTS:

THEORETICAL RESULTS:

For every architecture, a positive measure subset of
parameter space fails to achieve the theoretical upper

bound on functional dimension

THEORETICAL RESULTS:

For every architecture, a positive measure subset of
parameter space fails to achieve the theoretical upper

bound on functional dimension

For every architecture whose hidden layers are at least as wide
as the input layer, a positive measure subset of parameter

space achieves the upper bound on functional dimension*

*Conjecture (90% theorem)

Theorem (G-Lindsey-Rolnick ‘22): For every architecture
 with for , there exists a positive

measure subset of parameter space that admits no hidden
symmetries (parameters can be recovered up to permutation and

positive scaling)

(n0, …, nd) ni ≥ n0 i = 1,…, d − 1

MECHANISMS INSURING UPPER BOUND IS
ACHIEVED*:

Theorem (G-Lindsey-Rolnick ‘22): For every architecture
 with for , there exists a positive

measure subset of parameter space that admits no hidden
symmetries (parameters can be recovered up to permutation and

positive scaling)

(n0, …, nd) ni ≥ n0 i = 1,…, d − 1

MECHANISMS INSURING UPPER BOUND IS
ACHIEVED*:

*Conjecture (90% Theorem)

MECHANISMS INSURING UPPER BOUND IS
ACHIEVED*:

*Conjecture (90% Theorem)

Proof sketch:

MECHANISMS INSURING UPPER BOUND IS
ACHIEVED*:

*Conjecture (90% Theorem)

Proof sketch:

Kording-Rolnick proved: If every pair of bent hyperplanes from every pair of adjacent
layers intersects transversely (with expected dimension), then the parameters can be

recovered up to permutation and positive scaling

We give a construction ensuring the Kording-Rolnick condition is satisfied

Remark: The construction is fiddly! I don’t have a great sense of how often the transverse
pairwise intersection condition is satisfied in general, especially for deep networks.

MECHANISMS INSURING UPPER BOUND IS
ACHIEVED*:

Illustration of construction
For architecture (2,5,3,3)

FURTHER QUESTIONS:

FURTHER QUESTIONS:

How does functional dimension evolve during training?

FURTHER QUESTIONS:

How does functional dimension evolve during training?

How about in the overparameterized setting?

FURTHER QUESTIONS:

How does functional dimension evolve during training?

How about in the overparameterized setting?

Better understanding of the mechanisms affecting
(effective) functional dimension?

FURTHER QUESTIONS:

How does functional dimension evolve during training?

How about in the overparameterized setting?

Better understanding of the mechanisms affecting
(effective) functional dimension?

Dependence of (batch) functional dimension on
symmetries/geometry of data-generating distribution?

THANK YOU FOR BEING HERE!

