

DiffDock

Equivariant Diffusion Models for Molecular Docking

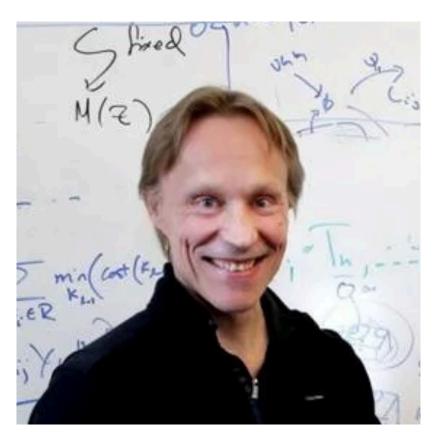
Gabriele Corso*

Hannes Stärk*

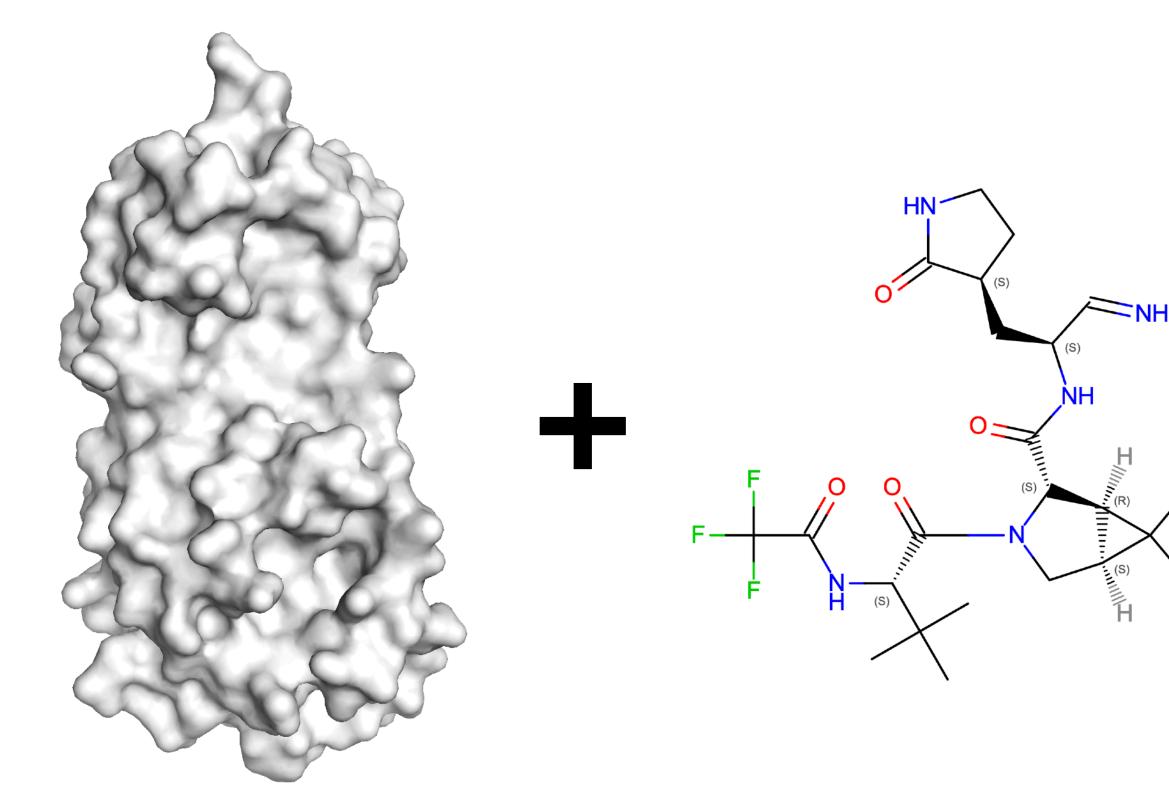
Bowen Jing*

Regina Barzilay

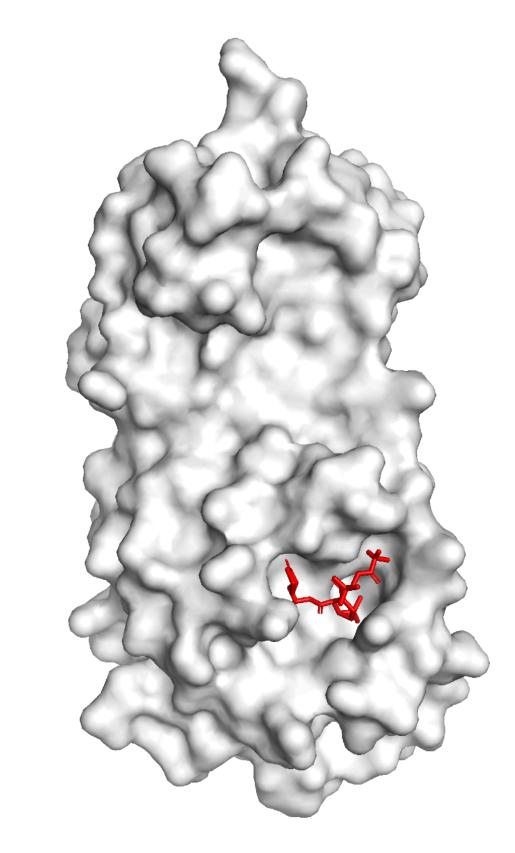
Tommi Jaakkola



Blind Protein-Ligand Docking

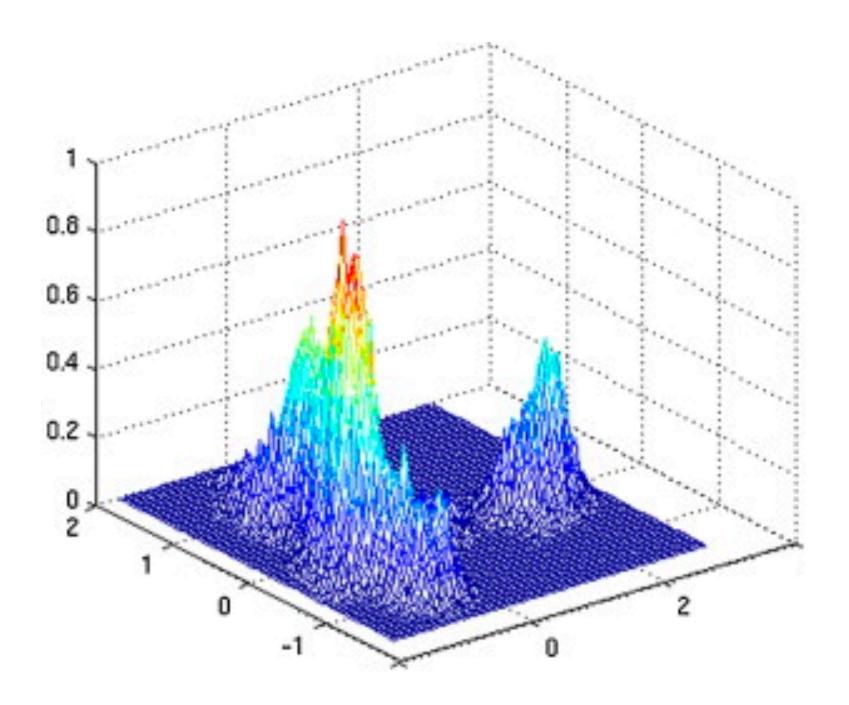


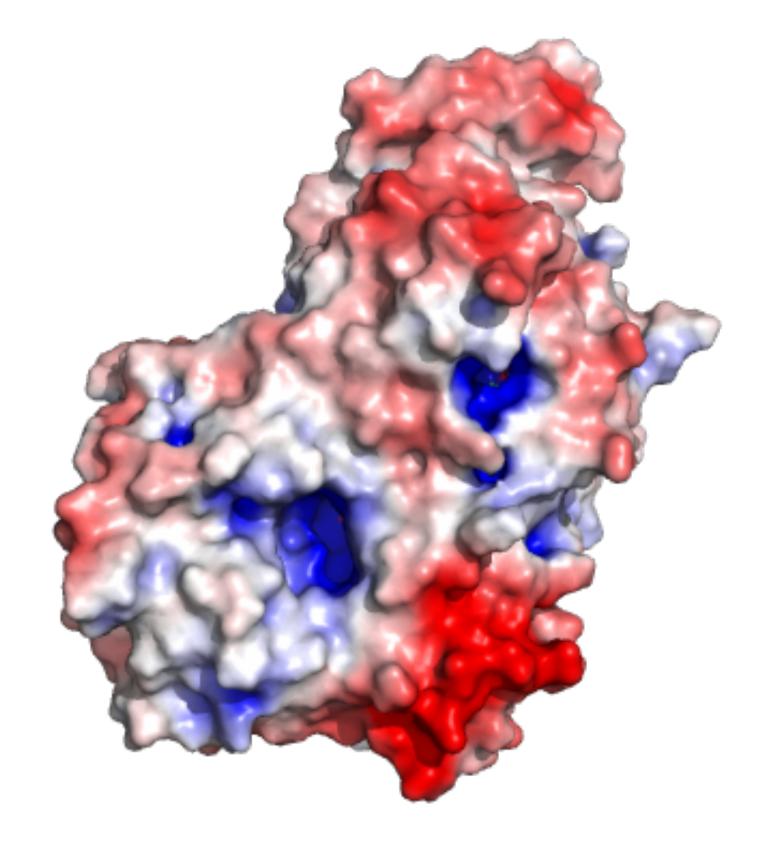
Input: protein structure + molecule



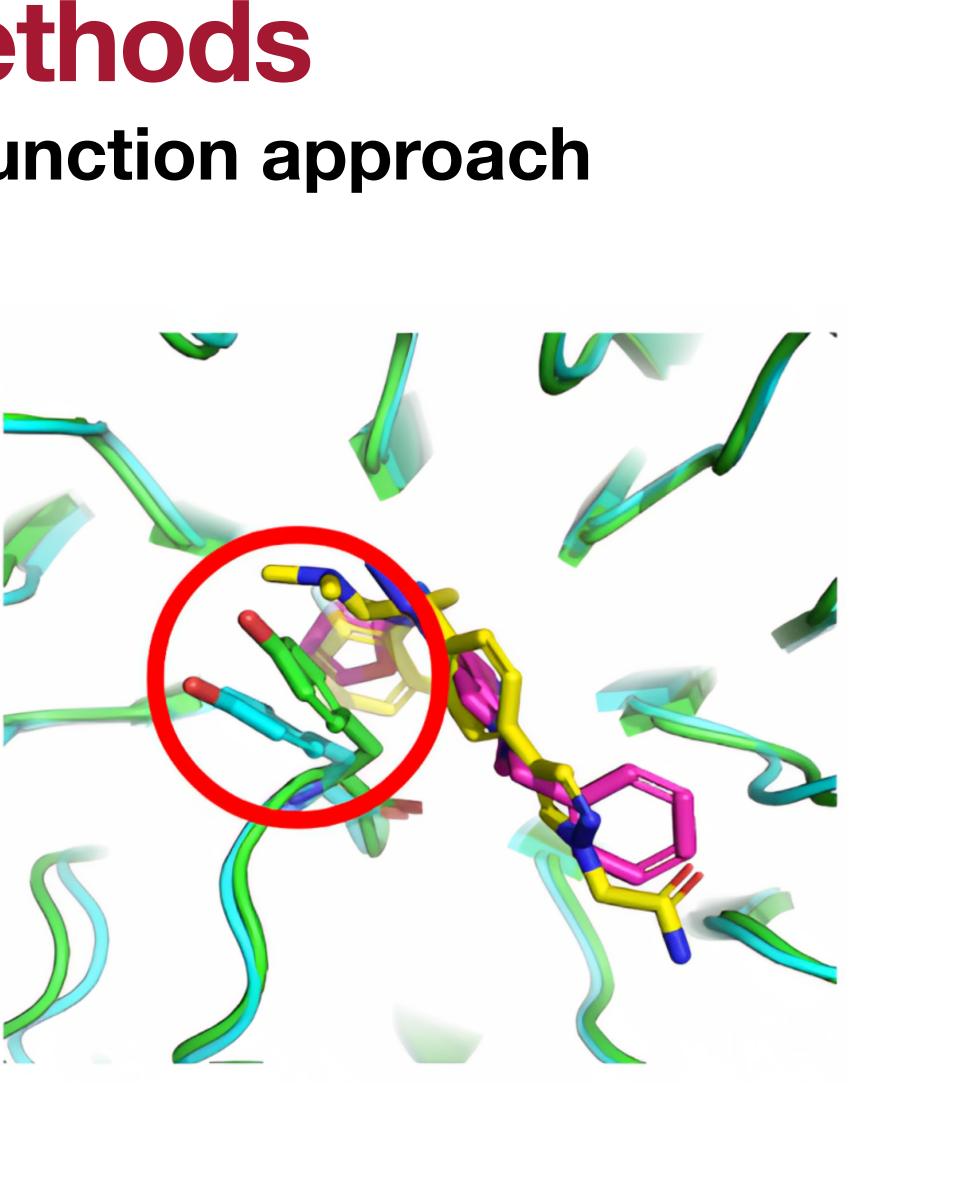
Output: bound structure

- fail to grasp with the vast search space of blind docking

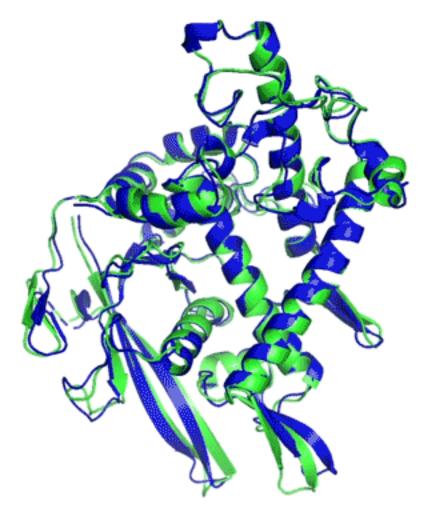


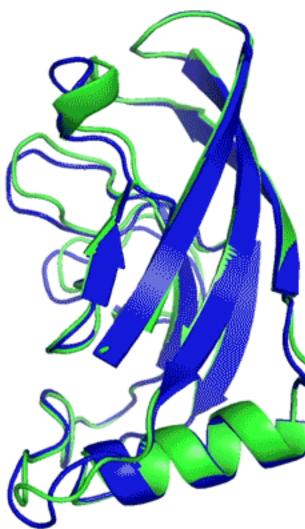


- fail to grasp with the vast search space of blind docking
- struggle with, e.g., side chain changes from unbound to bound protein structures



- fail to grasp with the vast search space of blind docking
- struggle with, e.g., side chain changes from unbound to bound protein structures
- unable to dock to imperfect computationally generated protein structures





T1037 / 6vr4 90.7 GDT (RNA polymerase domain) T1049 / 6y4f 93.3 GDT (adhesin tip)

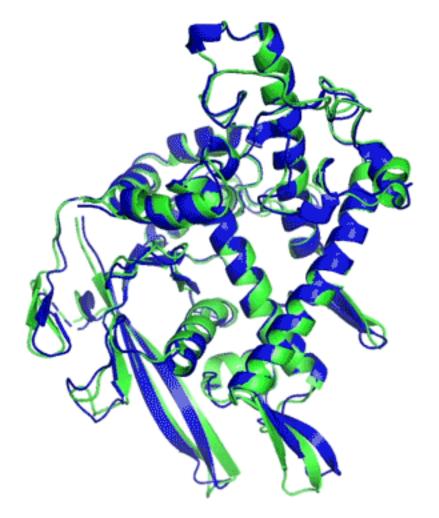
Experimental result

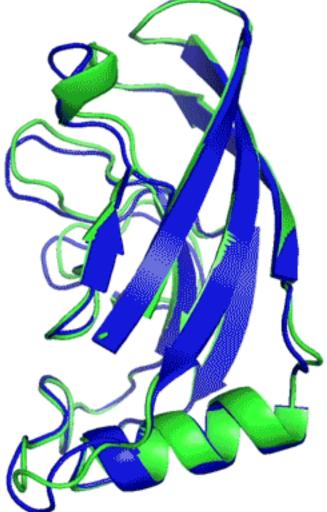
Computational prediction

- fail to grasp with the vast search space of blind docking
- struggle with, e.g., side chain changes from unbound to bound protein structures
- unable to dock to imperfect computationally generated protein structures

Wong et al. "Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic discovery."

Karelina et al. "How accurately can one predict drug binding modes using AlphaFold models?"





T1037 / 6vr4 90.7 GDT (RNA polymerase domain)

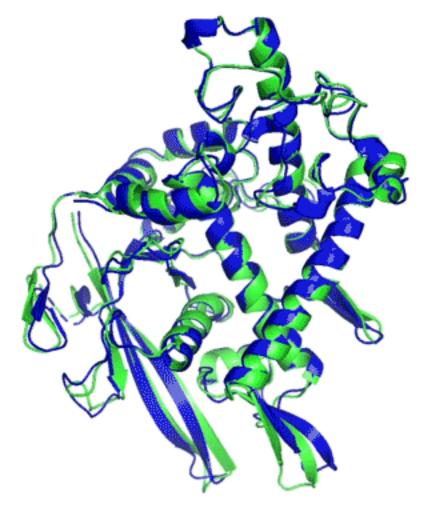
T1049 / 6y4f 93.3 GDT (adhesin tip)

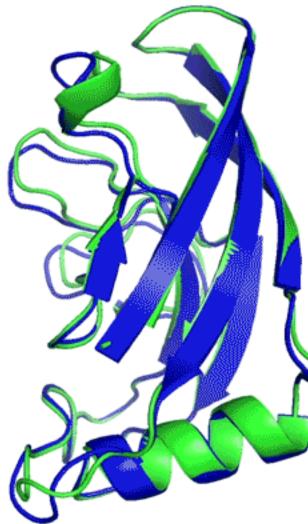
Experimental result

Computational prediction

- fail to grasp with the vast search space of blind docking
- struggle with, e.g., side chain changes from unbound to bound protein structures
- unable to dock to imperfect computationally generated protein structures

What can deep learning do for docking?

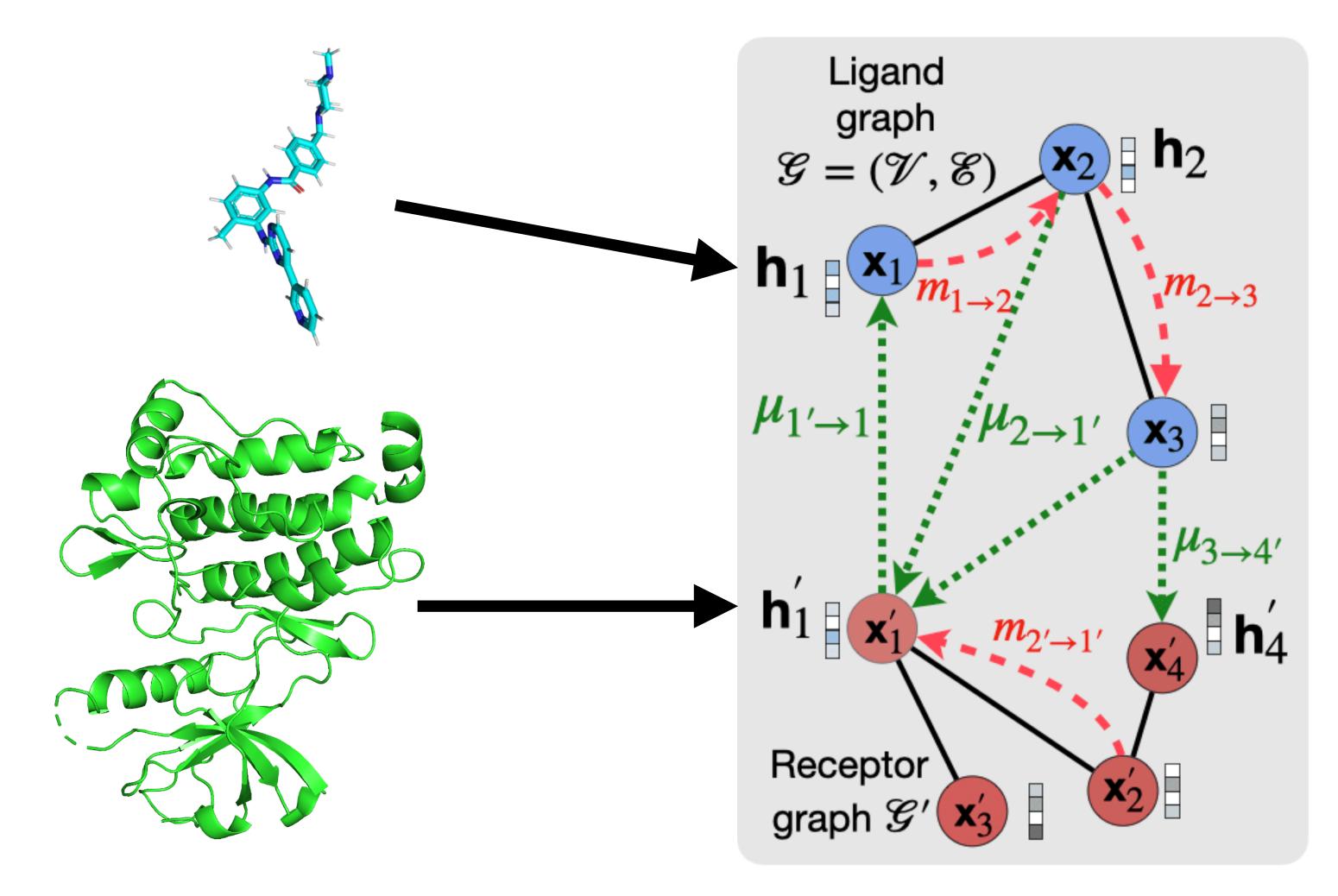


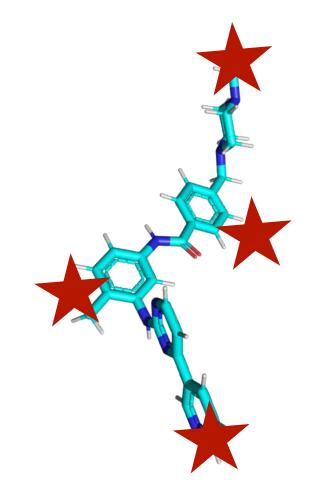


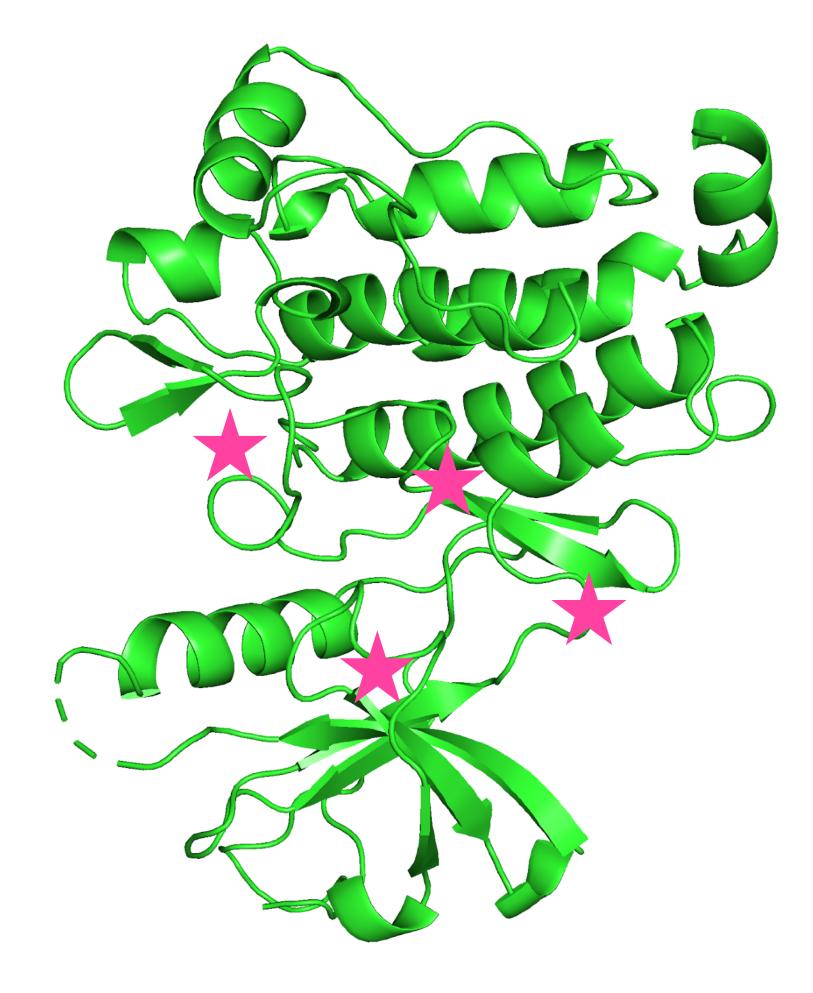
T1037 / 6vr4 90.7 GDT (RNA polymerase domain) T1049 / 6y4f 93.3 GDT (adhesin tip)

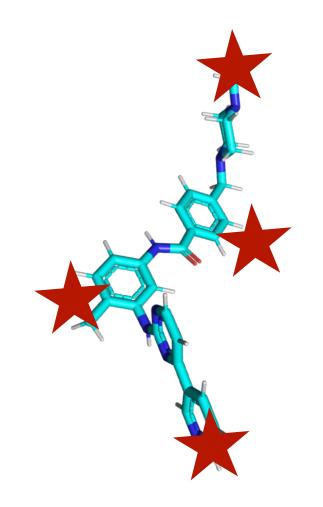
Experimental result

Computational prediction



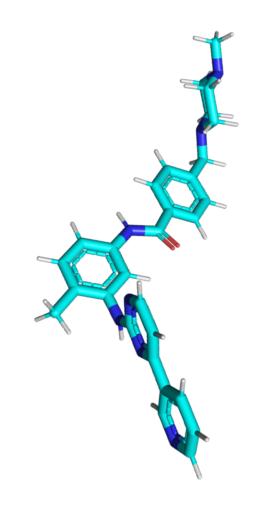




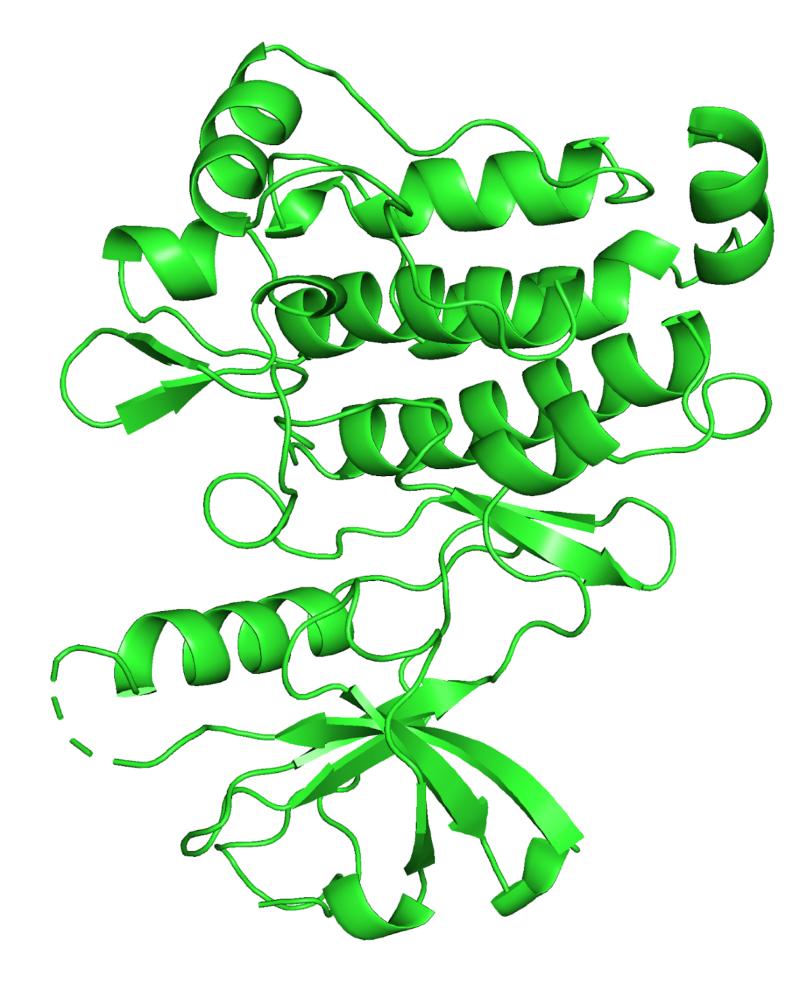


Kabsch algorithm calculates rototranslation to match keypoints

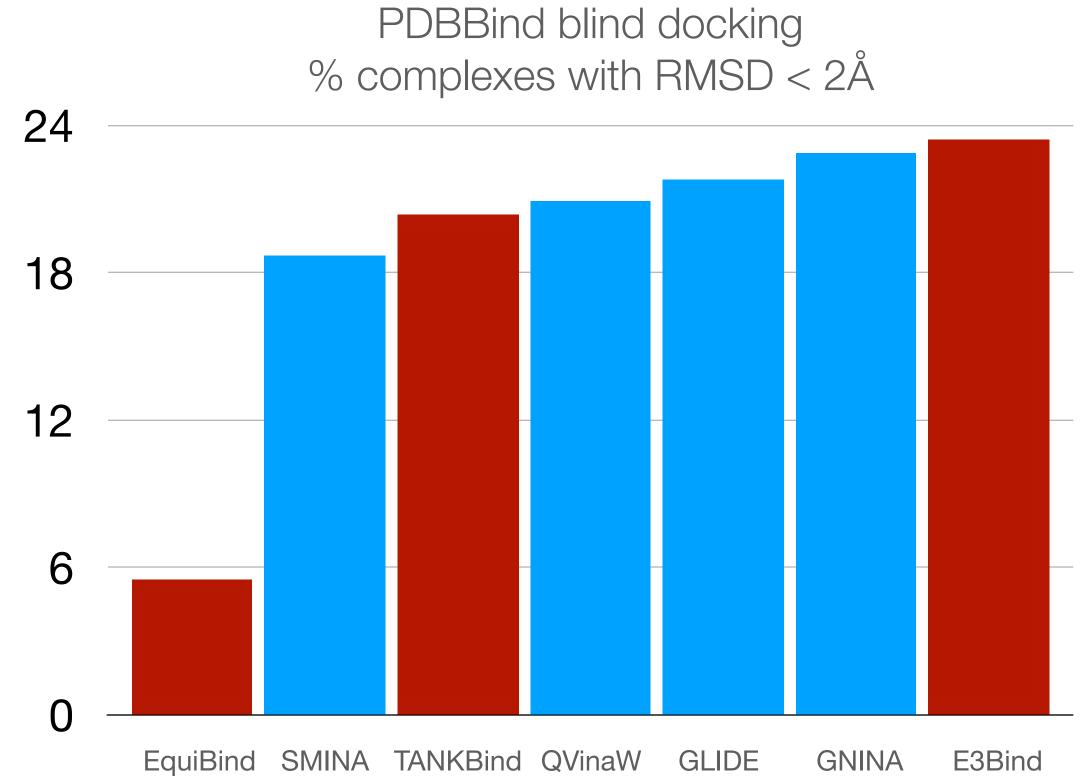
(EquiDock) Ganea et al. 2021, Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking



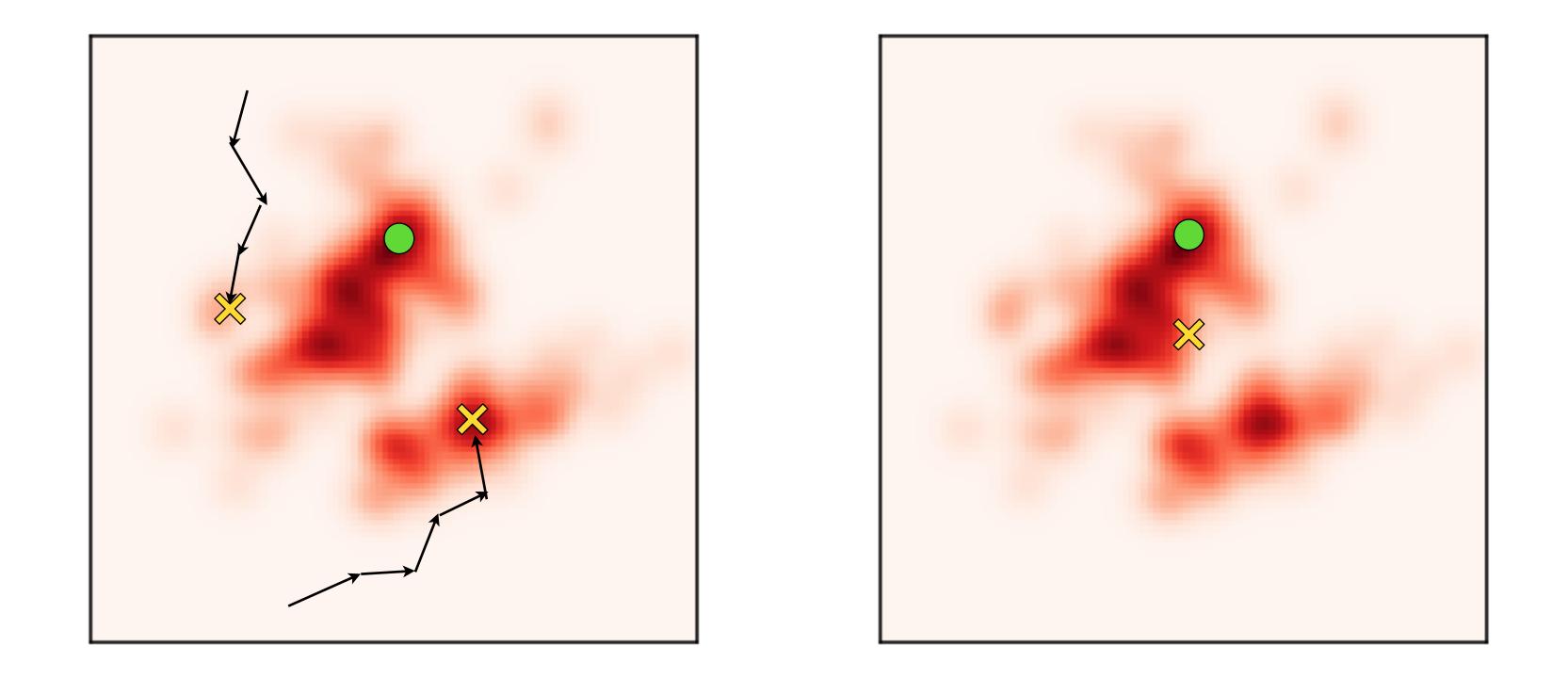
Apply rototranslation to molecule coordinates



Previous DL approaches No meaningful advances of SOTA.



Approaches to docking recap



Traditional docking: sampling & optimization over scoring function: **no finite-time guarantees**!

Previous deep learning: poor-quality single prediction with no refinement

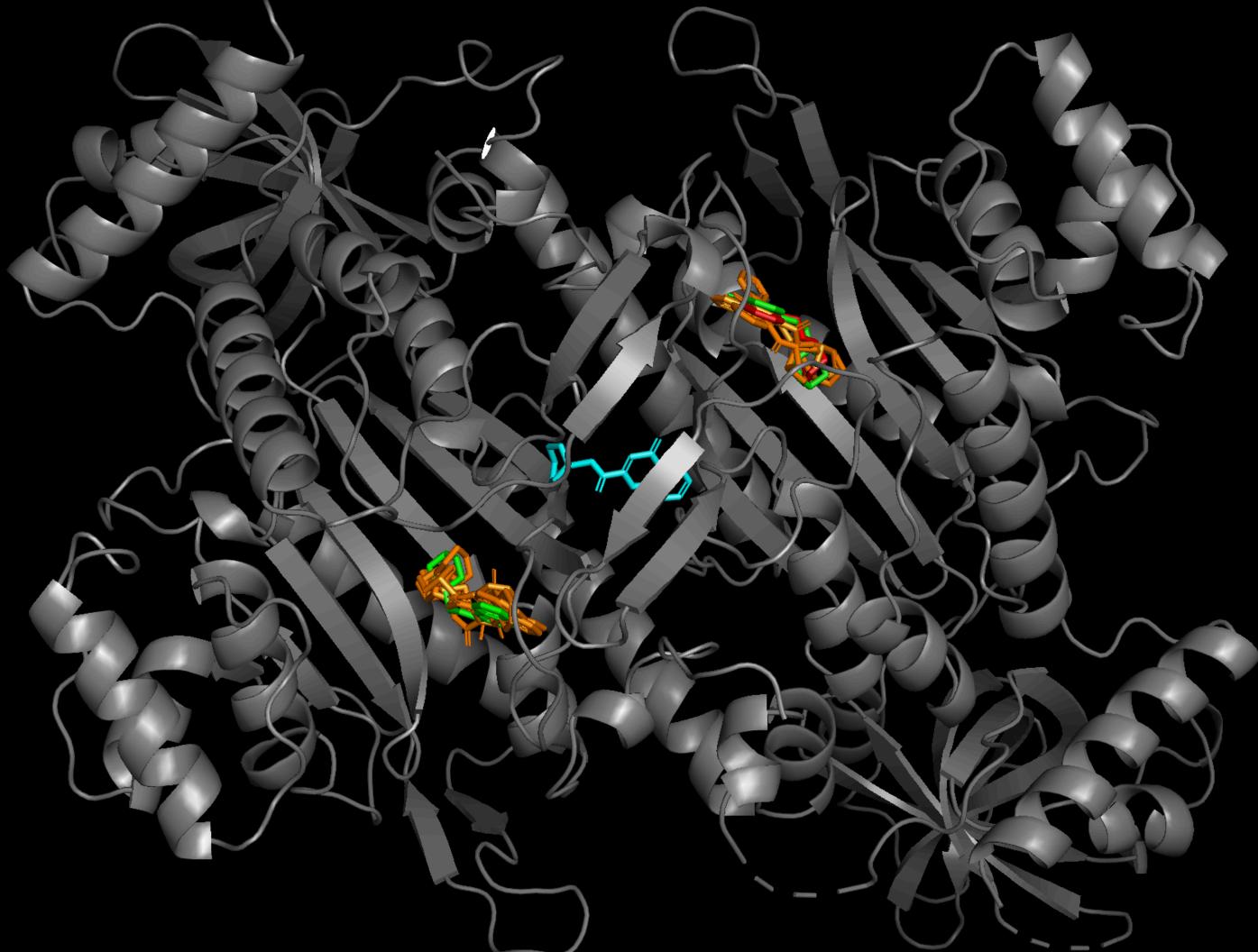
Docking as a Generative Modeling Problem A key paradigm shift from prior deep learning approaches

- Docking has significant aleatoric and epistemic uncertainty
- Any method will exhibit uncertainty about correct pose between multiple alternatives
- Regression methods to minimize squared error predict (weighted) mean
- Generative model will populate all/most modes

True bound structure **Regression** prediction Generative samples X ×

Docking energy landscape

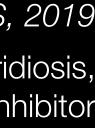
Regression vs Generation for Docking Aleatoric uncertainty induces "averaging" effect



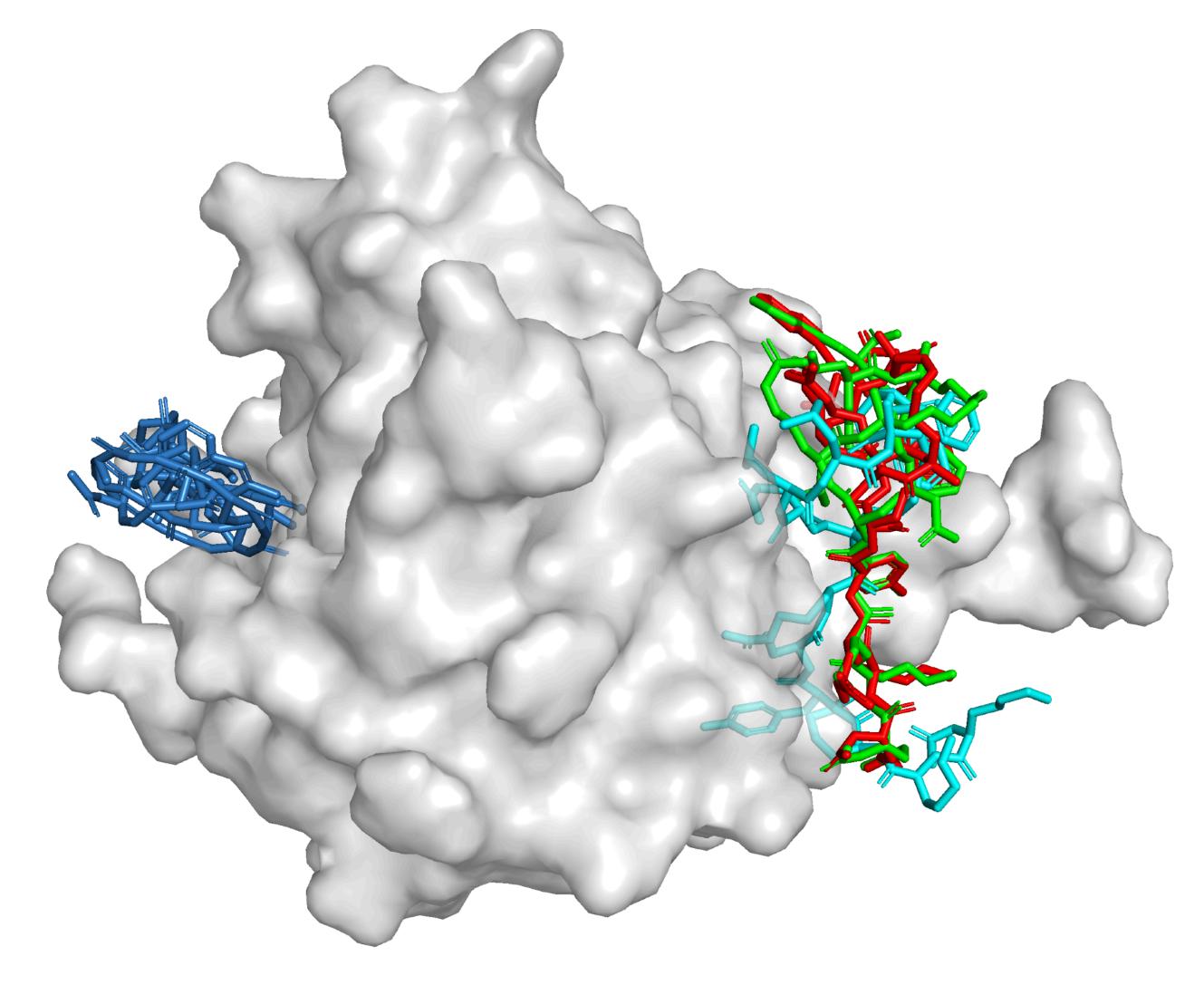
Crystal Structure EquiBind (regression) Generative samples DiffDock top-1

Baragaña et al. PNAS, 2019

PfKRS, drug target in malaria and cryptosporidiosis, complexed with chromone inhibitor



Regression vs Generation for Docking Model uncertainty is another issue

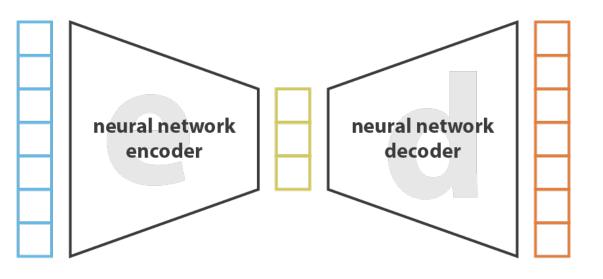


Crystal Structure EquiBind (regression) TANKBind (regression) DiffDock top-1

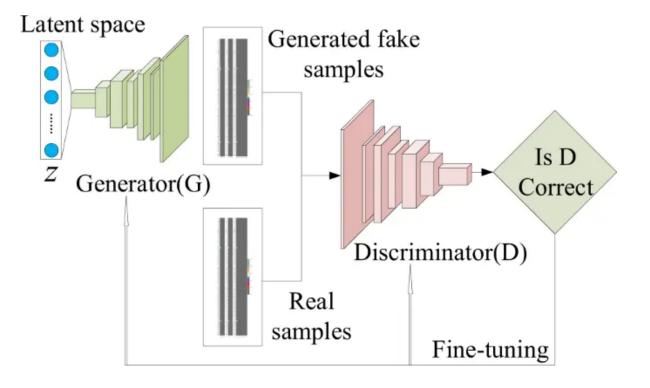
A Generative Model for Molecular Docking

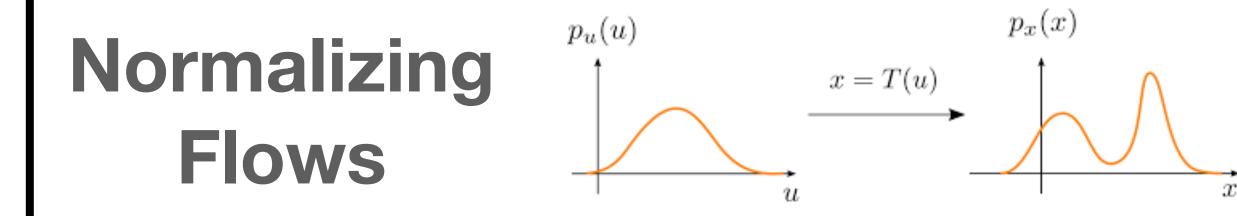
How to make our Generative Model? ML has developed plenty of options

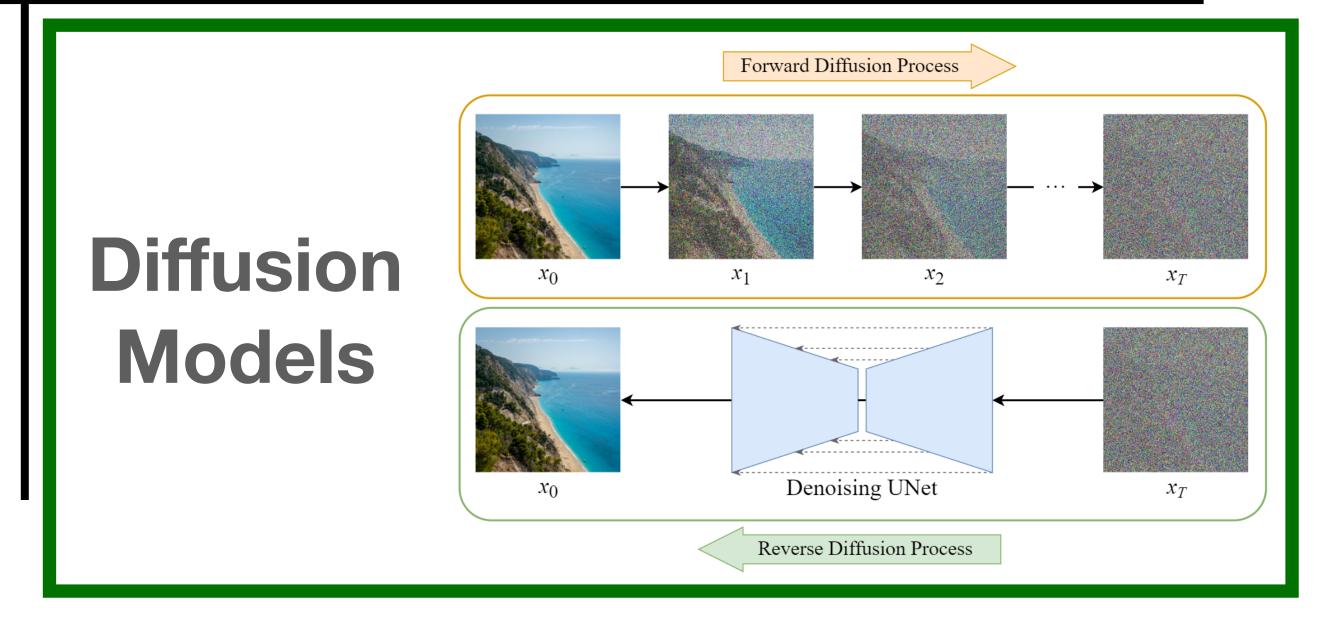
Variational Autoencoders



Generative Adversarial Networks

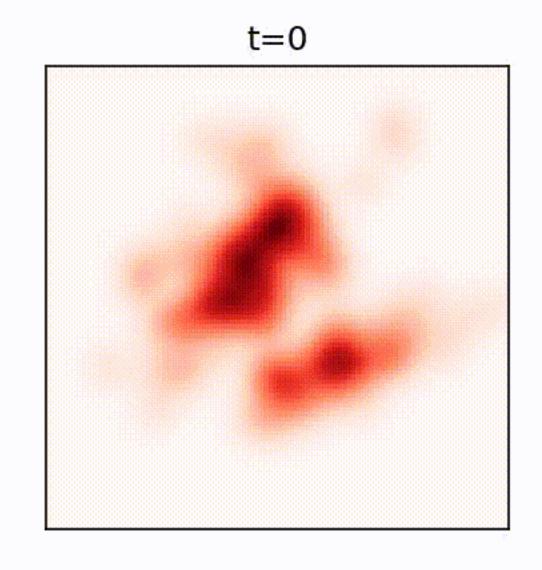


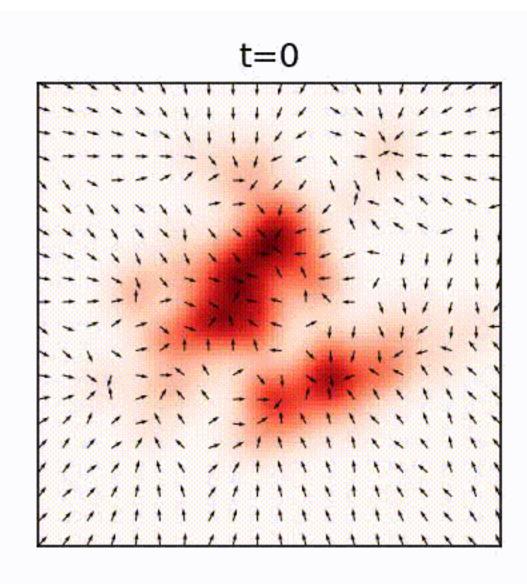




Diffusion Generative Models

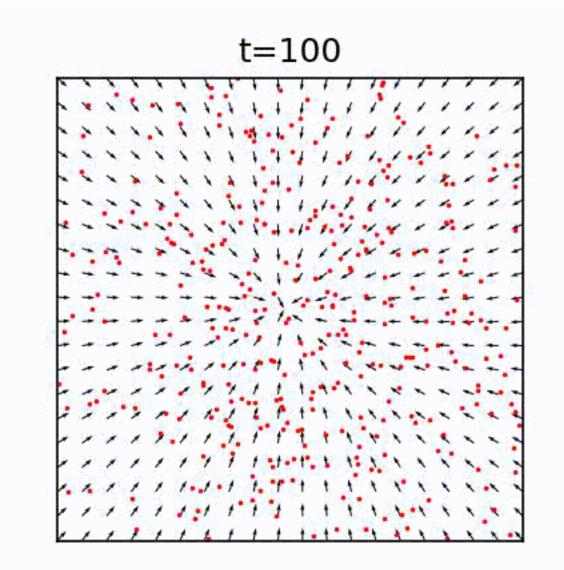
Diffusion Generative Models





Define the **forward diffusion** $d\mathbf{x} = f(\mathbf{x}, t) dt + g(t) d\mathbf{w}$

Learn the score (gradient of the log density) of the evolving data distribution



 $\mathbf{s}_{\theta}(\mathbf{x}, t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

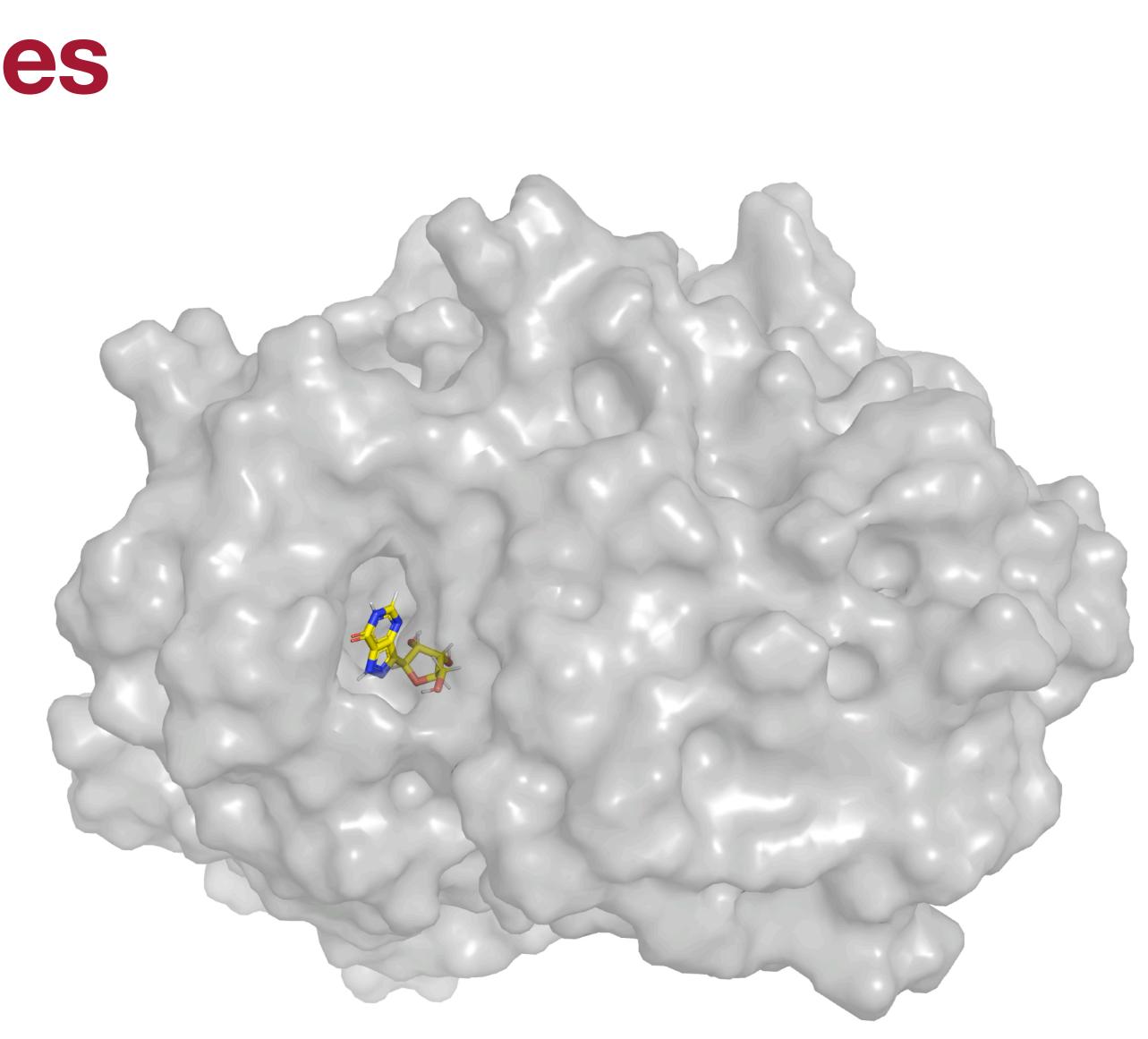
Sample the **reverse diffusion** $d\mathbf{x} = [f(t) - g^2(t) \mathbf{s}_{\theta}(\mathbf{x}, t)] dt + g(t) d\mathbf{w}$

[Andersen '82; Song et al '21] 26

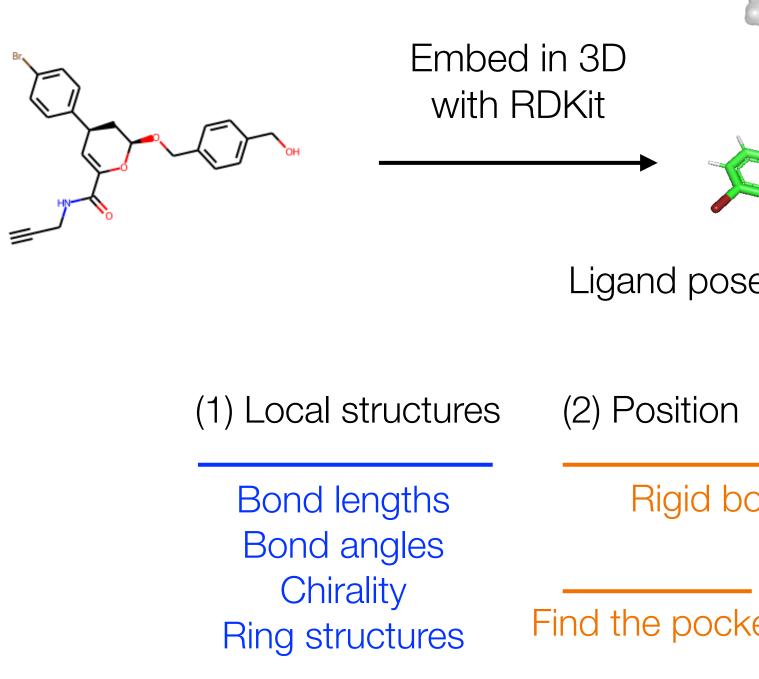
Space of Ligand Poses

A ligand's pose technically is $L \in \mathbb{R}^{3n}$

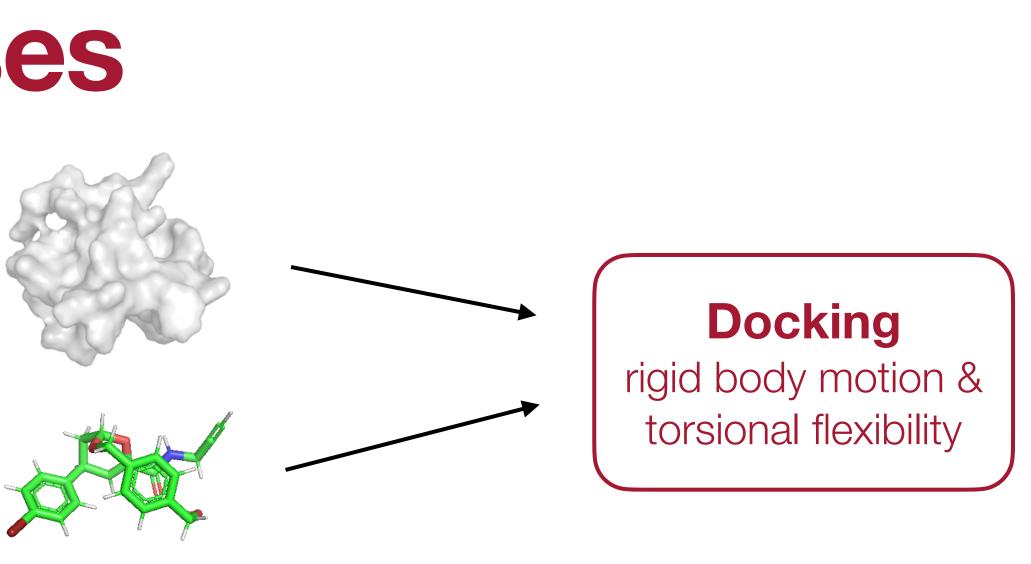
...but docking involves far fewer degrees of freedom



Space of Ligand Poses



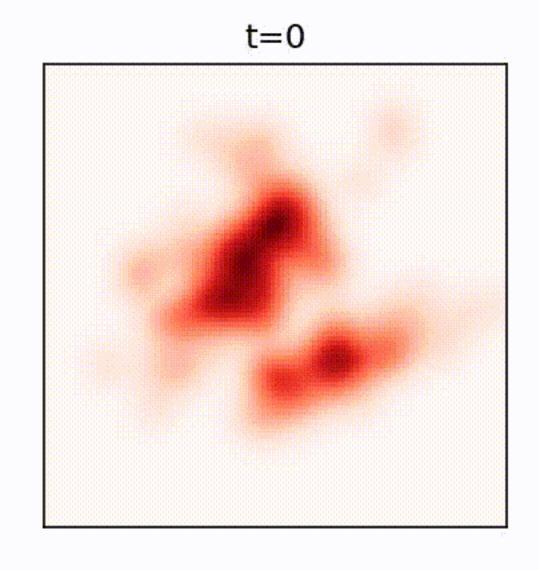
Keep local structures fixed: diffuse over m+6 dim. submanifold

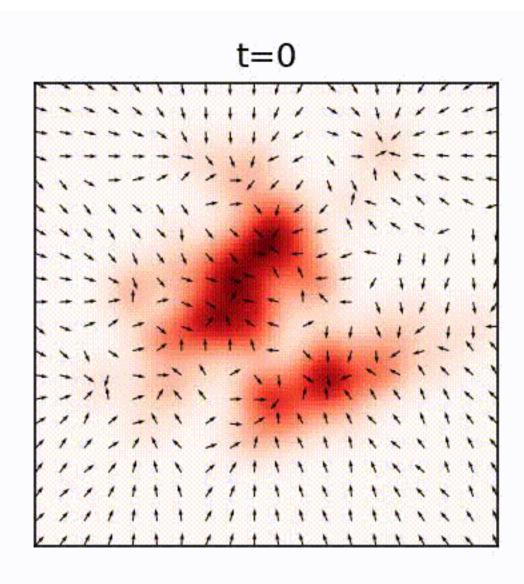


Ligand pose described by

ion	(3) Orientation	(4) Torsion angles			
d bod	ly motion	Torsional flexibility			
ocket	Fit in	Fit in the pocket			

Diffusion Generative Models

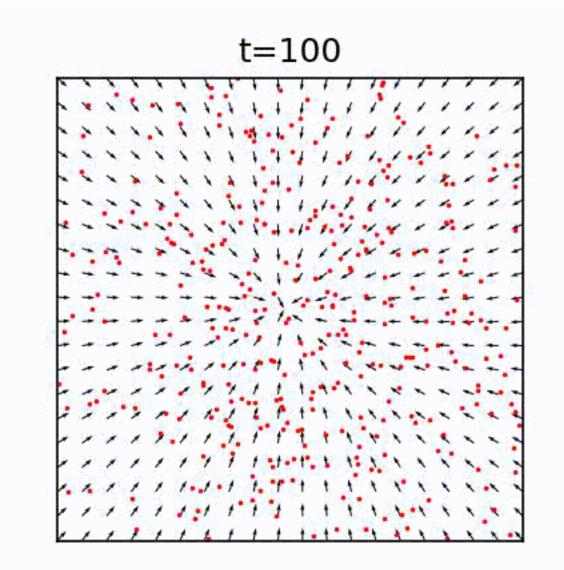




Define the **forward diffusion**

 $d\mathbf{x} = f(\mathbf{x}, t) dt + g(t) d\mathbf{w}$

Learn the score (gradient of the log density) of the evolving data distribution



 $\mathbf{s}_{\theta}(\mathbf{x}, t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

Sample the **reverse diffusion** $d\mathbf{x} = [f(t) - g^2(t) \mathbf{s}_{\theta}(\mathbf{x}, t)] dt + g(t) d\mathbf{w}$

[Andersen '82; Song et al '21] 30

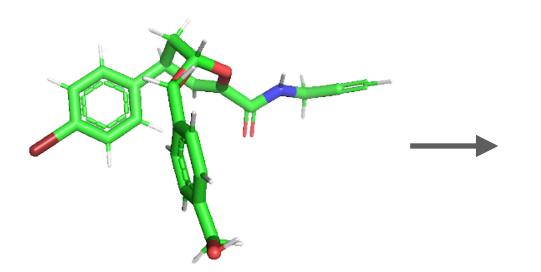
Mapping to the Product Space

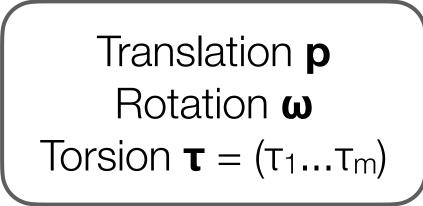
Point on ligand pose manifold "parameterized" by:

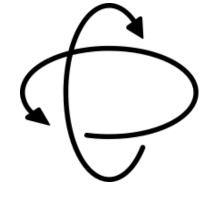
Position $\in \mathbb{R}^3$ Orientation $\in SO(3)$ Torsions $\in \mathbb{T}^m$

"Diffeomorphic" to product space $\mathbb{R}^3 \times SO(3) \times \mathbb{T}^m$

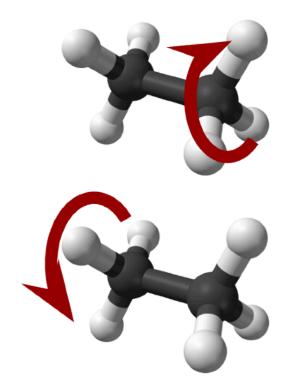
Need to map **displacements** on the product space to **changes** of pose.







Rotation: around center of mass

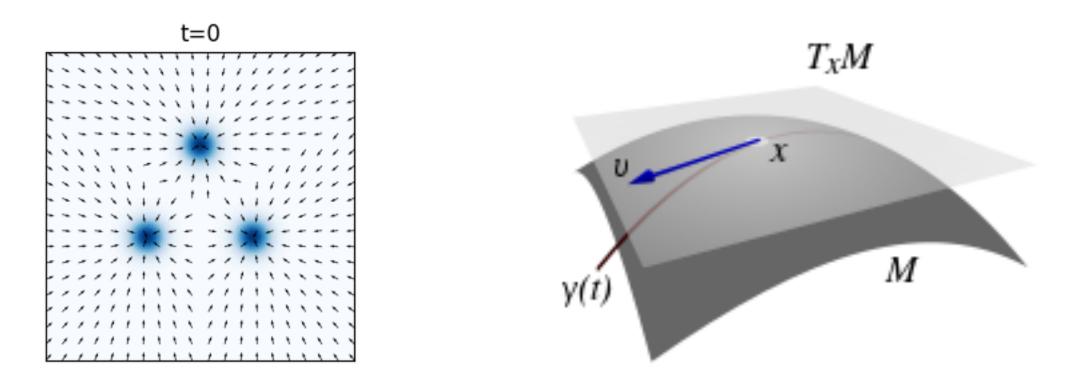


Torsion:

post-torsion RMSD alignment \rightarrow no linear or angular momentum

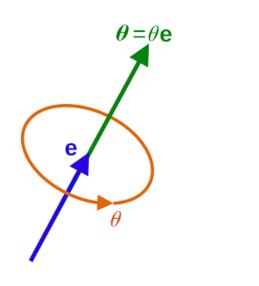
Product Space Diffusion

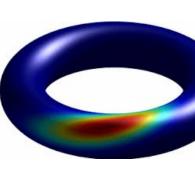
Diffusion generative modeling works on manifolds [de Bortoli et al, '22] ...provided the score model predicts in the **tangent space**



...and that we can:

- 1. sample the heat kernel for arbitrary t
- 2. compute its score
- 3. sample from the stationary distribution (t = T)



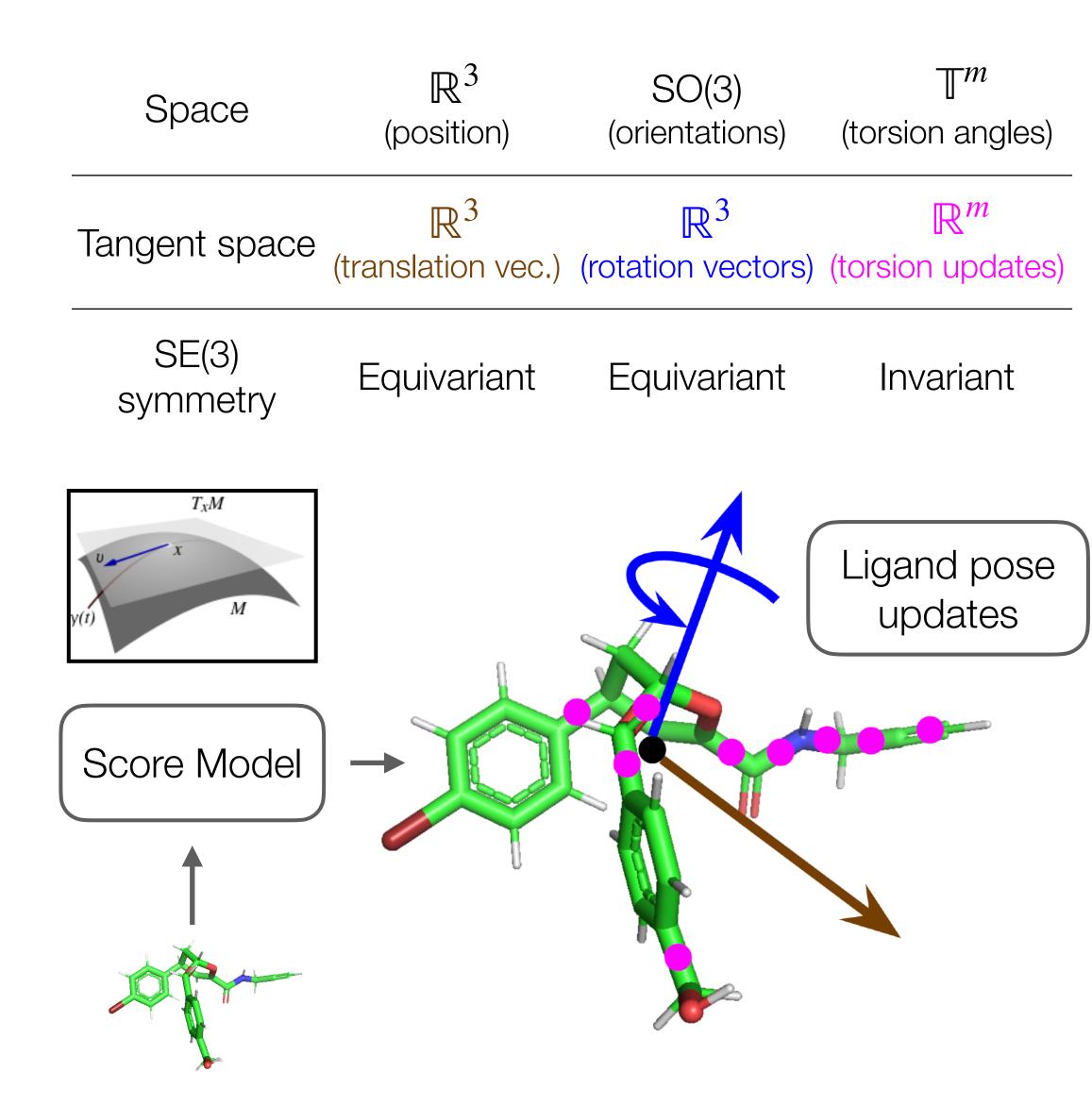


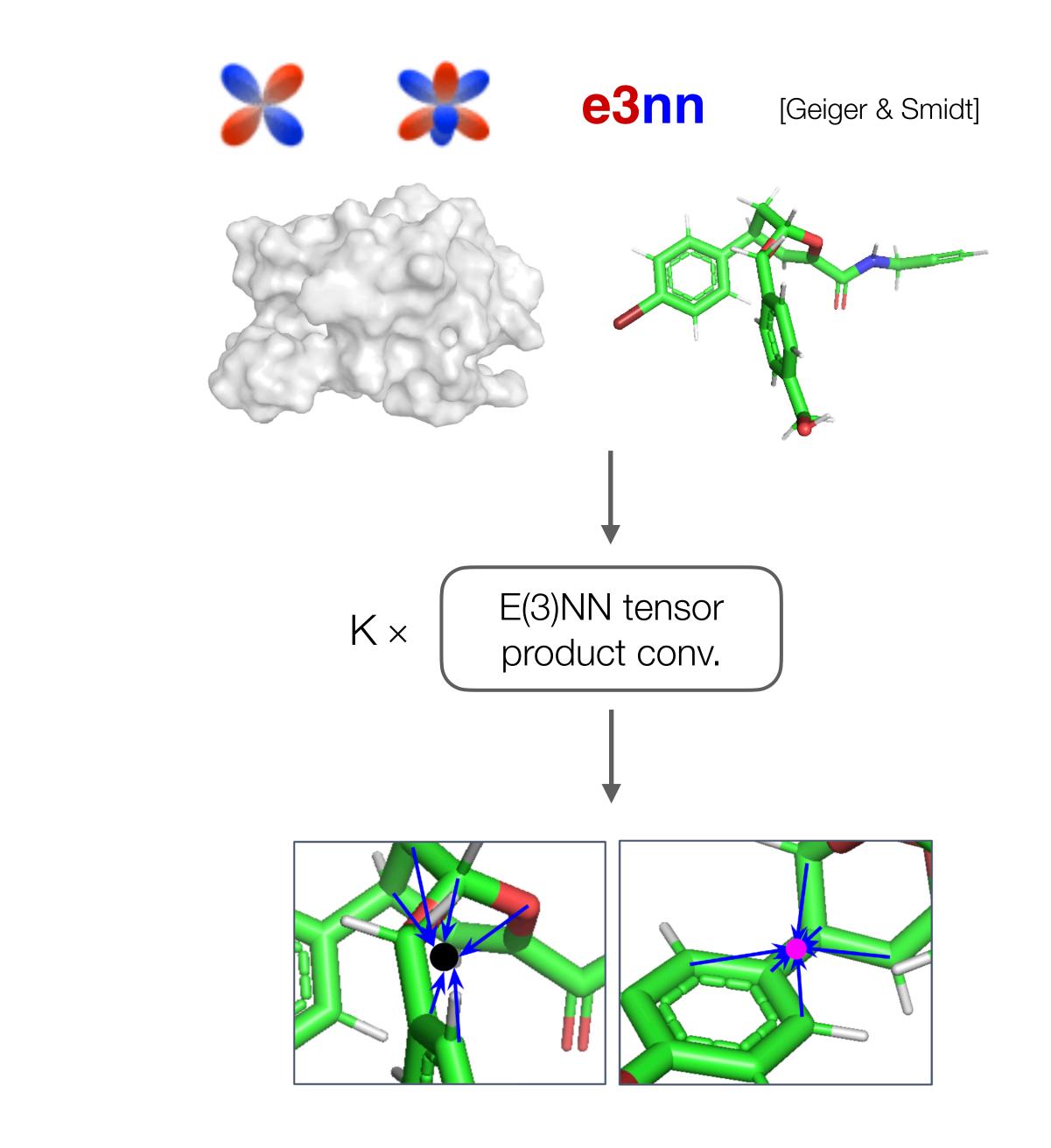
	Space	\mathbb{R}^3 (position)	SO(3) (orientations)	\mathbb{T}^m (torsion angles)
	Tangent space	R ³ (translation vectors)	\mathbb{R}^3 (rotation vectors)	\mathbb{R}^m (torsion updates
	Heat kernel	Normal	IGSO(3)	Wrapped normal
	Stationary dist.	Normal	Uniform	Uniform
	SE(3) symmetry	Equivariant	Equivariant	Invariant
		Steps	Turns	Twists

5)

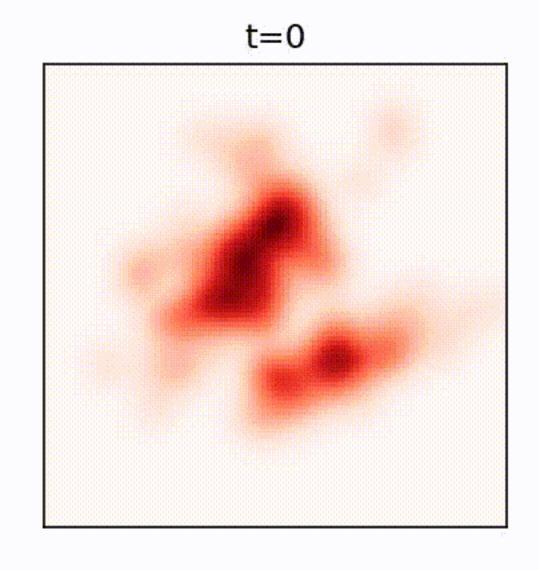
es)

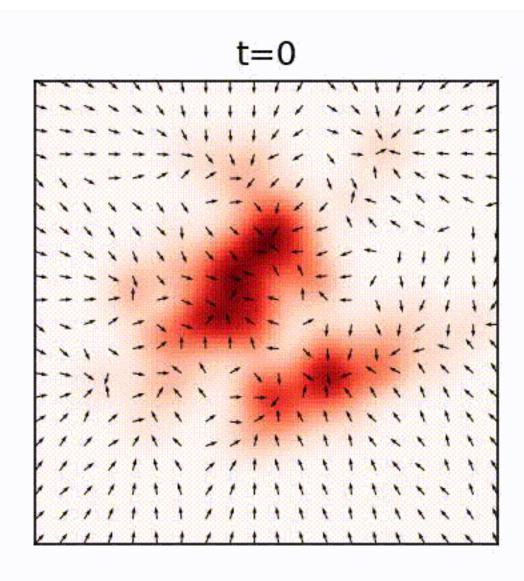
Score Model





Diffusion Generative Models

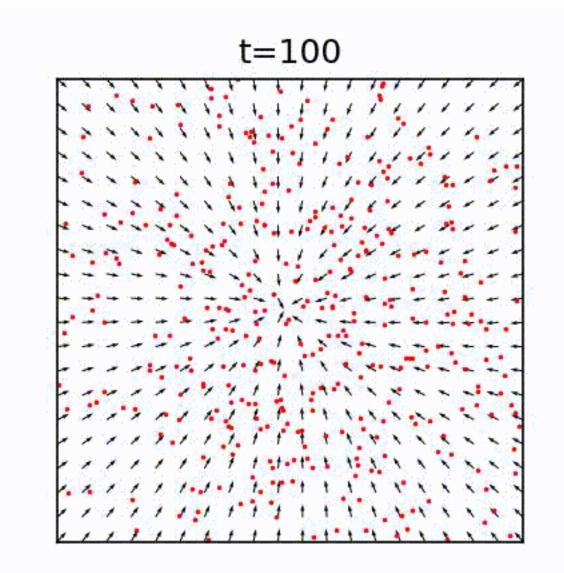




Define the **forward diffusion**

 $d\mathbf{x} = f(\mathbf{x}, t) dt + g(t) d\mathbf{w}$

Learn the score (gradient of the log density) of the evolving data distribution



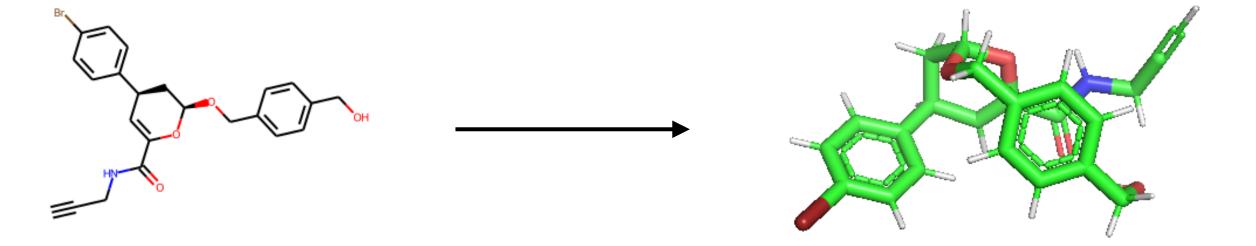
 $\mathbf{s}_{\theta}(\mathbf{x},t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

Sample the **reverse diffusion** $d\mathbf{x} = [f(t) - g^2(t) \mathbf{s}_{\theta}(\mathbf{x}, t)] dt + g(t) d\mathbf{w}$

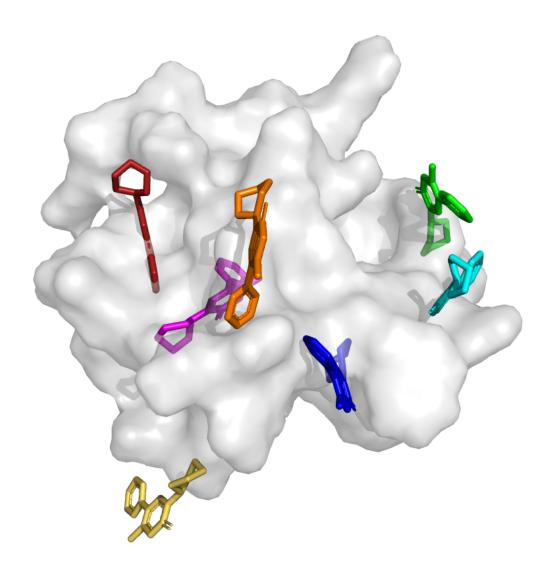
[Andersen '82; Song et al '21] 41

1. Embed with RDKit

- 2. Sample N random poses
- 3. Simulate reverse diffusion
- 4. Rank and select top M poses

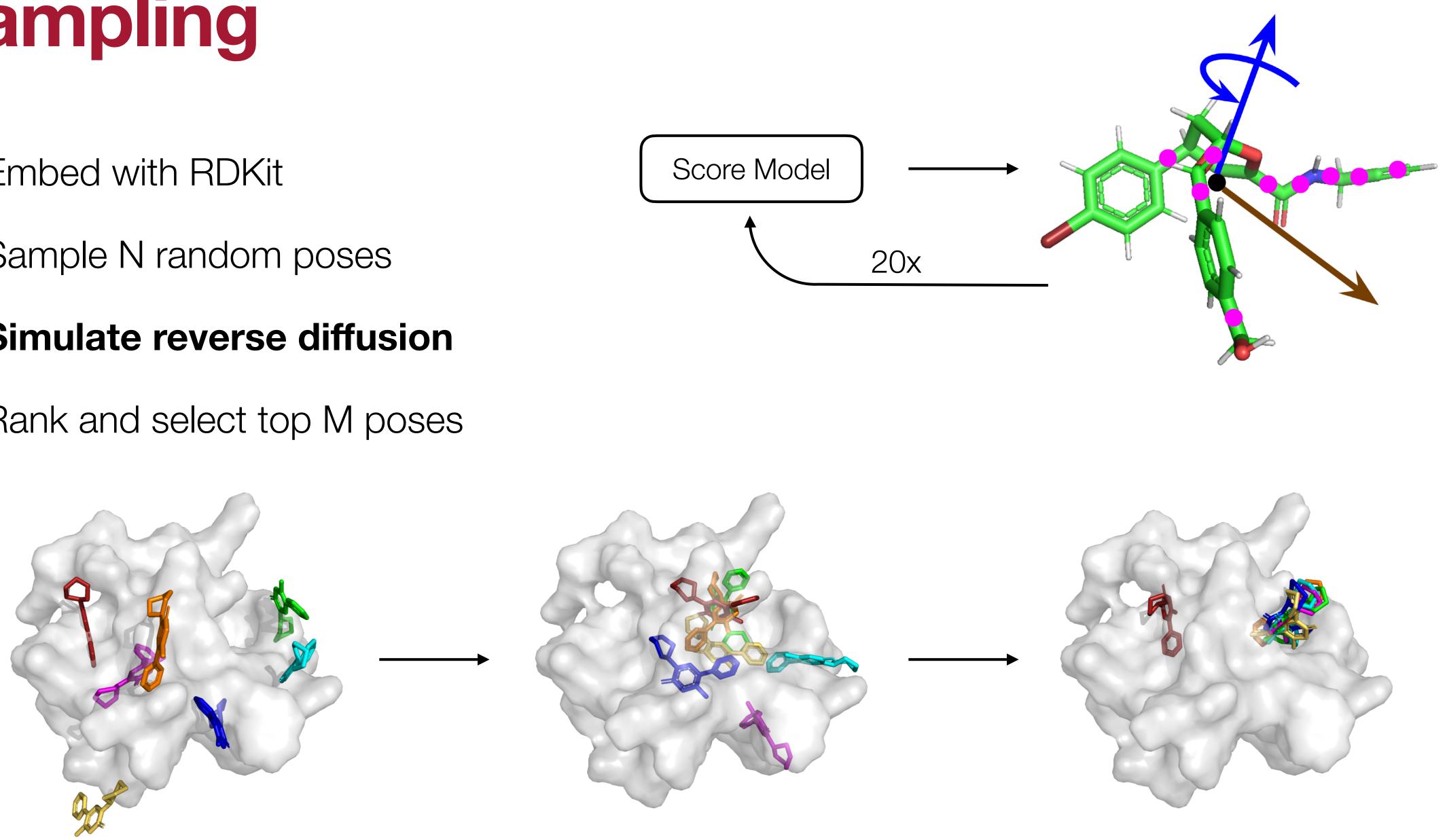


- 1. Embed with RDKit
- 2. Sample N random poses
- 3. Simulate reverse diffusion
- 4. Rank and select top M poses



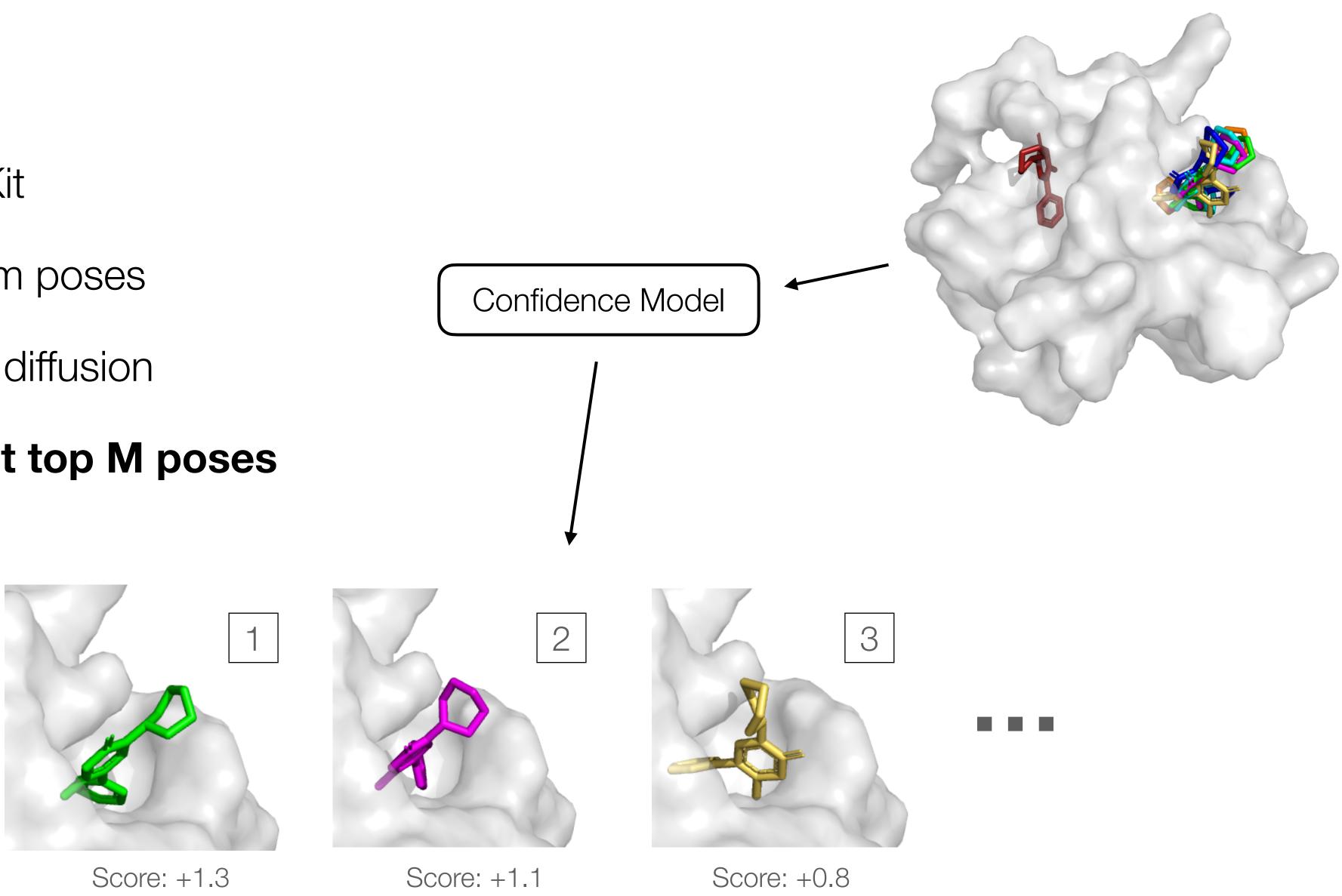
Space	\mathbb{R}^3 (position)	SO(3) (orientations)	\mathbb{T}^m (torsion angles)
Stationary distribution	Normal	Uniform	Uniform

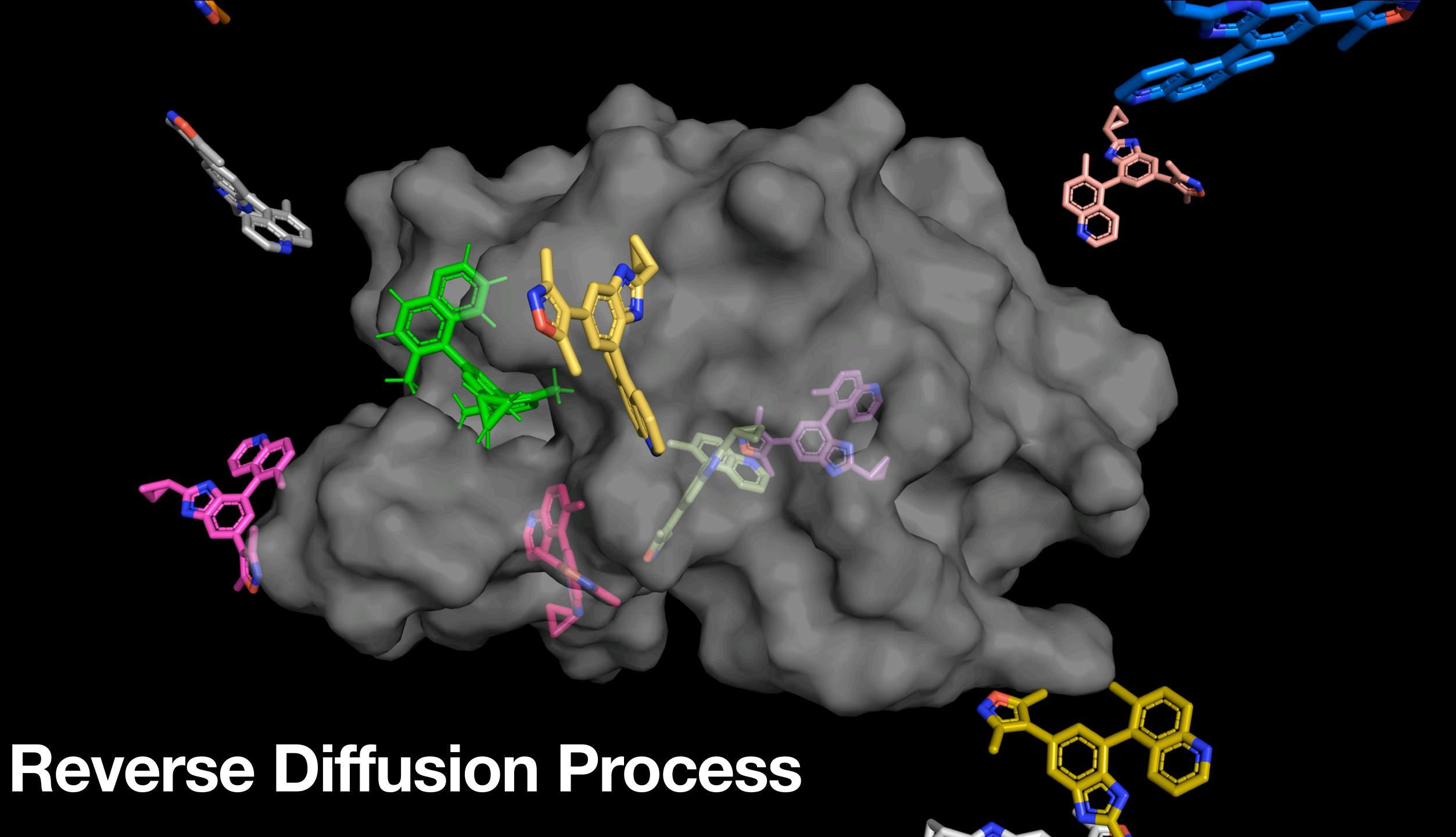
- 1. Embed with RDKit
- 2. Sample N random poses
- 3. Simulate reverse diffusion
- 4. Rank and select top M poses



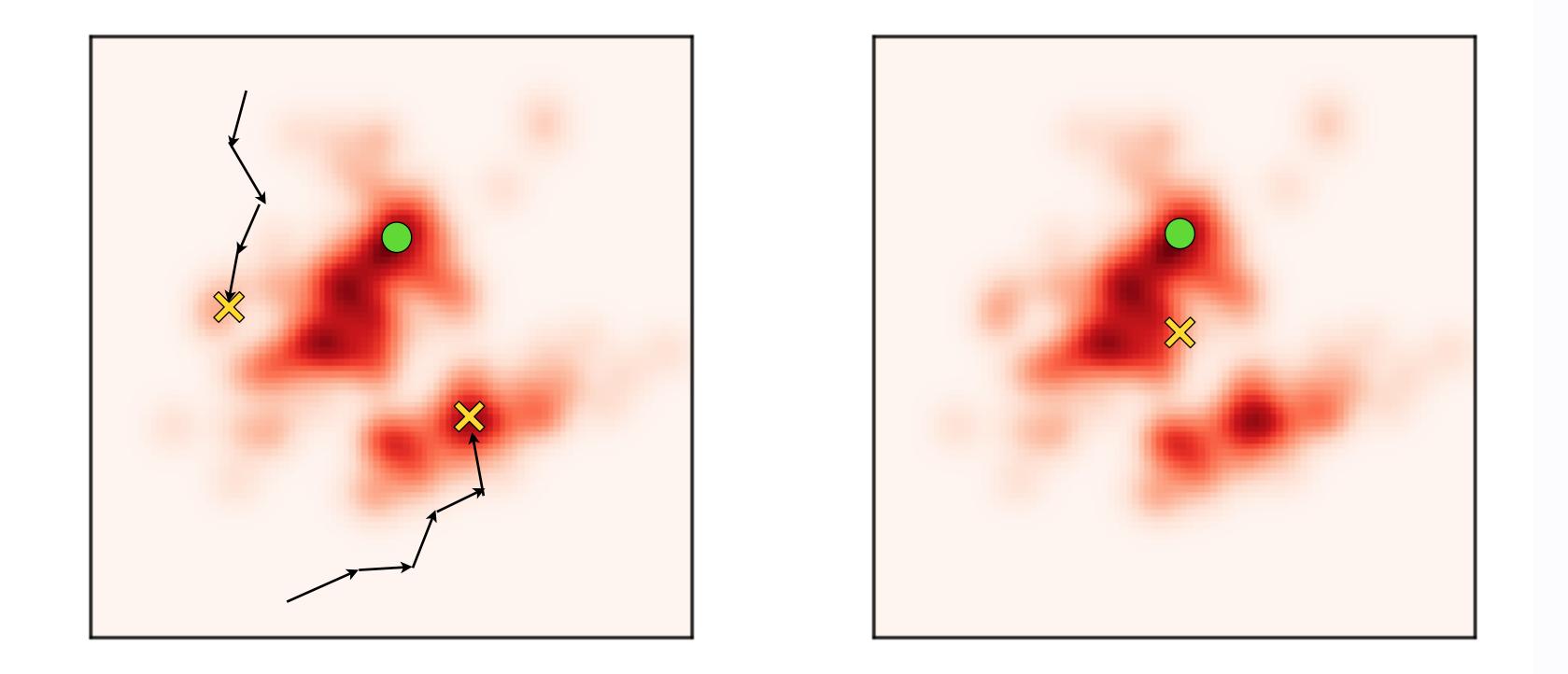
- 1. Embed with RDKit
- 2. Sample N random poses
- 3. Simulate reverse diffusion

4. Rank and select top M poses





Approaches to docking recap



Traditional docking: sampling & optimization over scoring function: no finite-time guarantees!

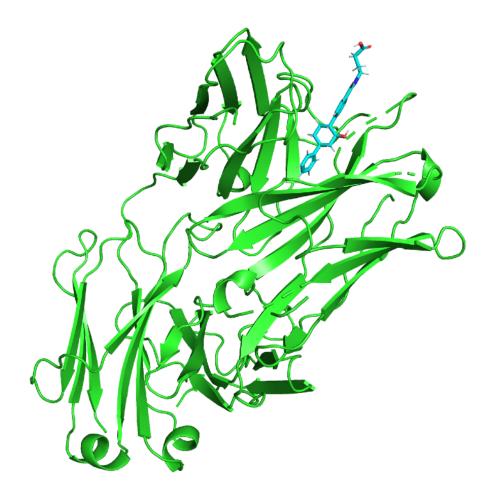
Previous deep learning: poor-quality single prediction and no refinement

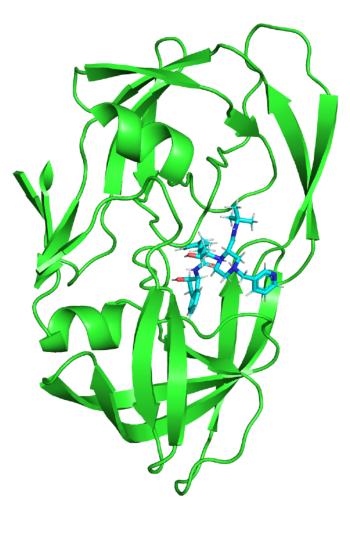
XXXXXXXXXXXXXXXXX //////////XXXXXXXXX ATTETTTTTTTTANANNY 1 1-1 4 1-1-1 1 1 1 1 1 1 1 1 1

Diffusion: sample from nonconvex density in finite time via a time-evolving vector field

Standard benchmark PDBBind

19k experimentally determined structures of small molecules + proteins





Baselines: search-based and deep learning

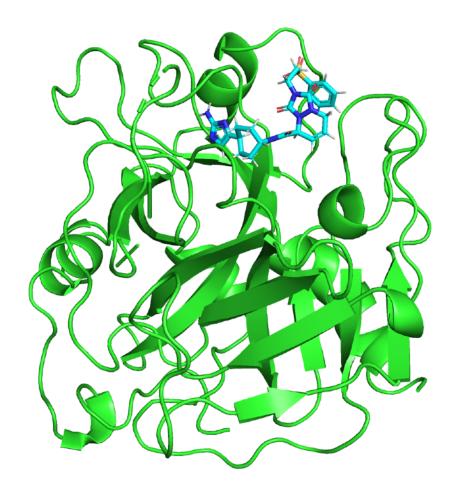
McNutt et al. 2021

SMINA

Koes et al. 2013

QuickVina-W

Hassan et al. 2017



Schrödinger. Release 2021-4

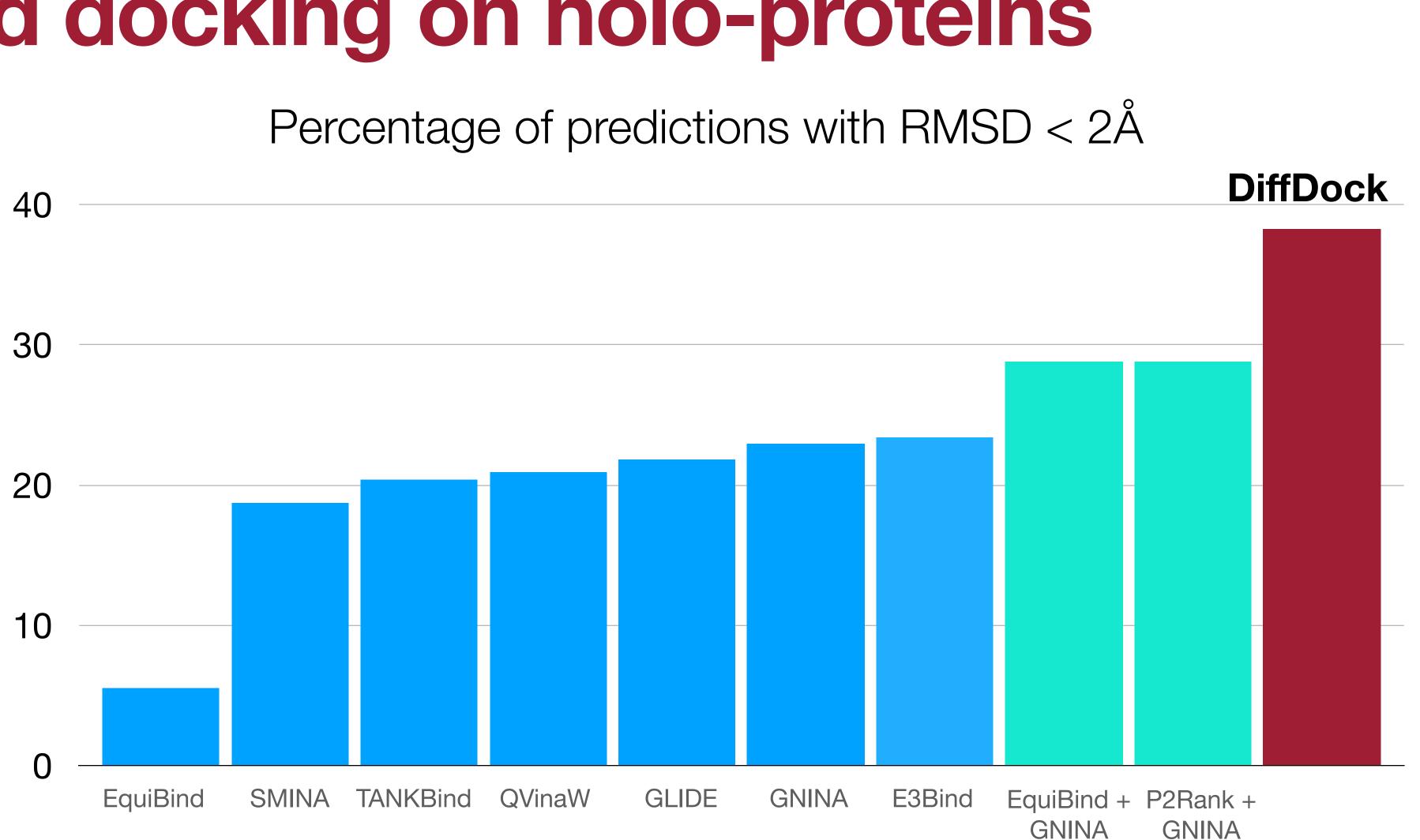
EquiBind

Stärk et al. 2022

TankBind

Lu et al. 2022

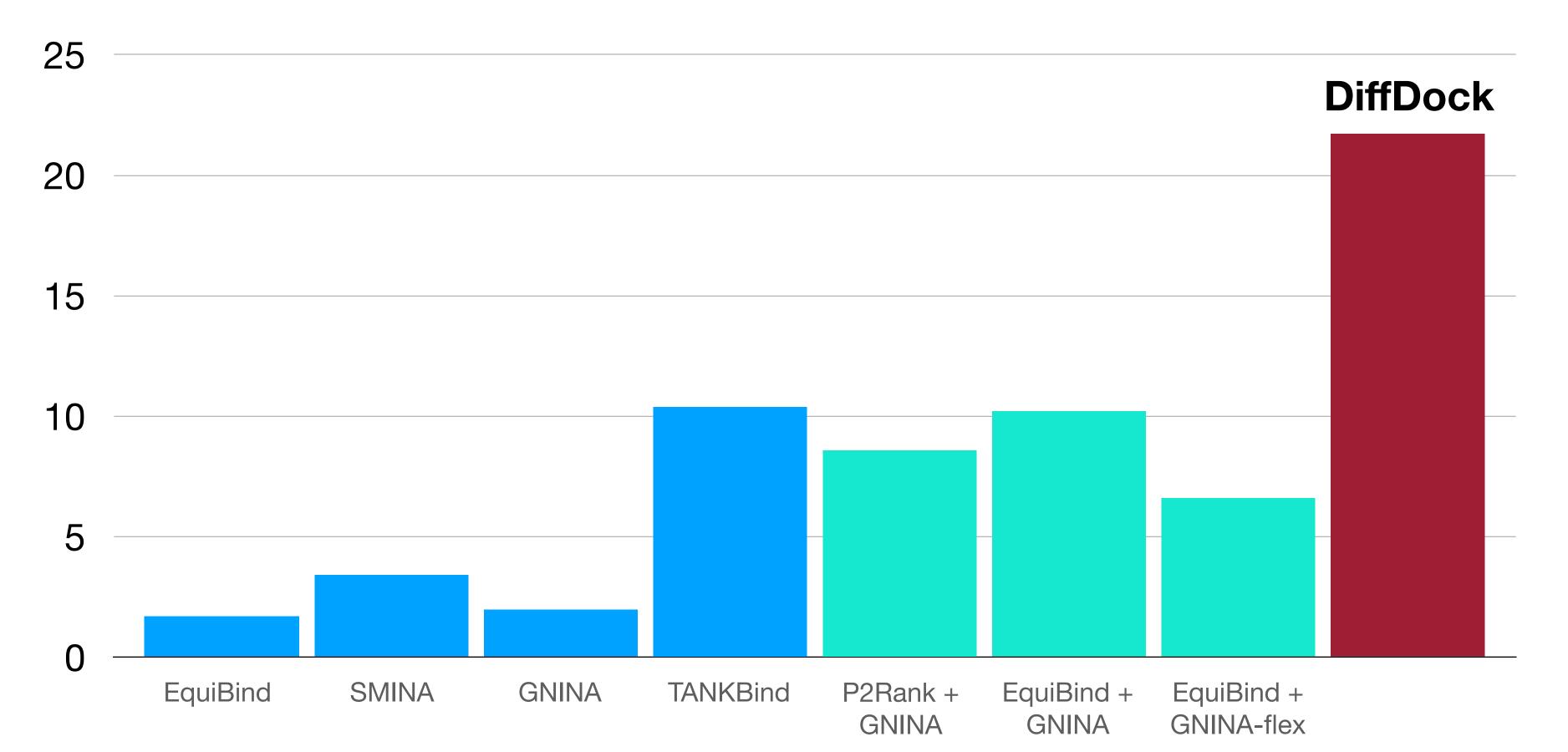
Blind docking on holo-proteins



Outperform search-based, deep learning, and pocket prediction + search-based methods

Blind docking on predicted structures

Percentage of predictions with RMSD < 2\AA



Retains significantly higher accuracy on ESMFold structures

Diffusion Steps, Twists, and Turns for Molecular Docking

Gabriele Corso*

Hannes Stärk*

All links in our GitHub: <u>https://github.com/gcorso/DiffDock</u>

DiffDock

Bowen Jing*

Regina Barzilay

Tommi Jaakkola



