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Two types of symmetries
Symmetries in the data, processes or phenomena 

● Usually, invariances of the distribution of data or features 
● Used in group equivariant neural networks

Symmetries in the parameter space

● Invariances of the loss or objective function
● May arise from model and layer architecture 

Zhao, Bo, Iordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. "Symmetries, flat minima, and the conserved 
quantities of gradient flow." ICLR 2023,  arXiv preprint arXiv:2210.17216 (2022). 

Yang, Jianke, Robin Walters, Nima Dehmamy, and Rose Yu. "Generative Adversarial Symmetry Discovery." arXiv preprint 
arXiv:2302.00236 (2023). 



Outline
● Parameter space symmetries (loss invariance)

○ Exact and independent of data 
○ Data dependent, nonlinear symmetries
○ Use case: Teleportation 

● Data symmetries
○ Discovering symmetries using LieGAN



Caspar David Friedrich Wanderer above the Sea of Fog, ca. 1817

https://www.artsy.net/artwork/caspar-david-friedrich-wanderer-above-the-sea-of-fog


What is the structure of the Loss landscape
● How much of the landscape can be predicted from the model architecture? 
● Are there flat valleys? 

?

https://peakvisor.com/park/grand-canyon-national-park.html



Mode connectivity

Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast 
ensembling of dnns."  (NIPS 2018).

Benton, Gregory, et al. "Loss surface simplexes for mode connecting 
volumes and fast ensembling." ICML, PMLR, 2021.

https://scholar.google.com/scholar_url?url=https://proceedings.neurips.cc/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf&hl=en&sa=T&oi=gsb-gga&ct=res&cd=0&d=7857512178594187445&ei=8mH2Y7WwA_OXy9YPnemr8AU&scisig=AAGBfm1ZNtZUTQprfdrJcGCeDnPKnMDI6A
https://scholar.google.com/scholar_url?url=https://proceedings.neurips.cc/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf&hl=en&sa=T&oi=gsb-gga&ct=res&cd=0&d=7857512178594187445&ei=8mH2Y7WwA_OXy9YPnemr8AU&scisig=AAGBfm1ZNtZUTQprfdrJcGCeDnPKnMDI6A
https://scholar.google.com/scholar_url?url=http://proceedings.mlr.press/v139/benton21a/benton21a.pdf&hl=en&sa=T&oi=gsb-gga&ct=res&cd=0&d=11311661921259603537&ei=DGL2Y9vlCtClmAGDo7EI&scisig=AAGBfm2olKpwsRyiCqnvbn2Ei4EaNV6-tQ
https://scholar.google.com/scholar_url?url=http://proceedings.mlr.press/v139/benton21a/benton21a.pdf&hl=en&sa=T&oi=gsb-gga&ct=res&cd=0&d=11311661921259603537&ei=DGL2Y9vlCtClmAGDo7EI&scisig=AAGBfm2olKpwsRyiCqnvbn2Ei4EaNV6-tQ


Mode connectivity

Entezari, Rahim, et al. "The role of permutation 
invariance in linear mode connectivity of neural 
networks." arXiv preprint arXiv:2110.06296 (2021).

Ainsworth, S. K., Hayase, J., & Srinivasa, S. (2022). Git re-basin: Merging models modulo permutation symmetries. 

https://arxiv.org/pdf/2110.06296.pdf
https://arxiv.org/pdf/2110.06296.pdf
https://arxiv.org/pdf/2110.06296.pdf
https://arxiv.org/pdf/2209.04836.pdf


Architecture ⇔ structure of loss landscape
“This partitioning of chaotic and convex regions may explain the importance of good 
initialization strategies, and also the easy training behavior of “good” architectures.”

Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).



1. What aspects of the architecture produce extended valleys in the loss? 
2. What parametrizes different points along a loss valley?  

Extended valleys? 

Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).



Short answer: Origin of low loss valleys 
1. What aspects of the architecture produce extended valleys in the loss? 
● Answer: Some valleys arise from continuous symmetries

 

2. What parametrizes different points along a loss valley?  
● Answer: in symmetry induced valleys

Conserved quantities can parametrize the valley



ICLR 2023



Definitions
● “Loss”: combination of model architecture and loss function (e.g. MSE or 

cross entropy loss)

Ex: Loss(W; X, Y) = MSE(F(W, X), Y) (F representing a neural net)

● “Symmetry”: Any transformation on model weights or data which keep loss 
invariant. 



Continuous symmetries should produce valleys
● If there exist continuous symmetries of model parameters,
● Example: Linear regression, two layer linear network 

● For any linear reparamtrization W= UV : 



Nonlinear case
● More tricky: continuous symmetries not guaranteed to exist for generic 

nonlinear activation… But 



General case using “equivariant” activation
Consider a subnetwork with 

Let be a subgroup and    be a representation. 

If

Then, this subnetwork has the symmetry  



Examples of 
● Linear network: Has GL symmetry (any invertible matrix g)

● Homogeneous: is symmetric under positive rescaling (diagonal matrices with 
positive diagonal entries)

○ ReLU and LeakyReLU: Homogeneous of degree 1. Have positive rescaling symmetry

● Radial rescaling activation:
Symmetric under the orthogonal group



Symmetry moves us along flat valley
● Is there a way to define 

coordinates along flat directions? 
● Are some places better than 

others, or should we make an 
ensemble from them (like “fast 
ensembling” paper)? 



Continuous Symmetry ⇒ Extended local minima 

Dimension of generic orbit of group: 

● Linear: 

● Homogeneous: 

● Radial:
g g



How can we parameterize where along a 
minimum we are?  

g g



During gradien flow (GF) some quantities remain 
constant

GF:

Conservation of Q: 

Q: Parameterizing where along a minimum we are?  

A: Conserved quantities



Relating conserved Q to symmetries

Symmetry condition: 

Infinitesimal version ⇒  

Where M is a Lie algebra element 



Conserved Q for linear symmetries

● All conserved Qs in literature (known as “imbalance”) are for symmetric M

● Linear:

● Homogeneous (e.g. ReLU):

● For antisymmetric M (e.g. O(h) rotation symmetry) angular momenta of 
successive layers cancel. We could not identify an explicit for for Q for O(h). 



Need for data-dependent symmetries.
● The symmetries discussed so far were linear  and data-independent



Non-linear group action



Application: Teleportation
Symmetries can be used to move to points on the level-set with steeper gradients

Zhao, B., Dehmamy, N., Walters, R., & Yu, R. (2022). Symmetry Teleportation for 
Accelerated Optimization. Neurips 2022.

https://arxiv.org/pdf/2205.10637.pdf
https://arxiv.org/pdf/2205.10637.pdf


Ex: Rosenbrock





Conclusion
● Model architecture can result in a lot of continuous symmetries in the loss 

landscape 
● The symmetries can be used to move to more favorable parts along minima
● Nonlinear, data-dependent symmetries may be useful for generalization
● Further works is needed





LieGAN
● Learn Lie algebra to generate transformations to fool discriminator



2-body gravitation system



Discover Lorentz Symmetry from particle physics data
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Noether’s Theorem
Every continuous symmetry leads to conserved quantities during dynamics

● Can conserved quantities define coordinates along loss valleys? 
● Is Noether’s theorem applicable to

gradient descent? 

g g



Imbalance: A conserved quantity in gradient descent (GD)

Layer imbalance 

Is conserved during GD

NeurIPS 2018 



Imbalance: A conserved quantity in gradient descent (GD)
For homogeneous nonlinearity, imbalance is conserved during GD

● Could imbalance be related to symmetries?



Rescaling ⇒ Imbalance
Noether’s theorem shows that when 
a model is invariant under rescaling 
of weights of two layers, the 
imbalance between the two layers is 
conserved 



How? 
● Noether’s theorem works specifically with “Lagrangians”. 
● The dynamics is defined via a variational principle  
● How can GD be written in this language, as a variational equation? 



How? 
⇒ If we approximate gradient descent using a second-order continuous gradient 
flow, the dynamics can be derived from a variational Lagrangian

x = model parameters (weights)

V = loss

 

2nd order gradient flow (GF)



Lagrangian formulation of 2nd order gradient flow
Bregman Lagrangian (also used in Tanaka & Kunin NeurIPS 2021) 
( x=weights, V=loss, ε=learning rate, γ = 2/δx )

Variational (Euler-Lagrange) equations:  

⇒ 



Noether’s theorem for 2nd order GF
Let   denote an infinitesimal continuous symmetry transformation. Then the 
following Q is conserved (dQ/dt=0) during the GF dynamics 

Let      where T is an infinitesimal symmetry generator (e.g. Lie algebra) 



Conserved quantity decays to zero
For symmetries with linear action (matrix product)

⇒ in the limit of 1st order GF (        ) 
Noether’s theorem predicts decays to zero 
exponentially





Examples
For symmetries with linear group action (matrix product) 

Symmetry group is a subgroup of GLn(general linear group: invertible matrices)

T can be split into:

1. S: symmetric (scaling and hyperbolic) 
2. A: antisymmetric (rotations)

S: generalizes imbalance

For UV: 



Antisymmetric generators (rotations)
Conserved Q: a particular angle is conserved 

Ex: 2D rotation



Conserved quantities parametrize loss valleys
● Q can be used to define coordinate along symmetry-induced loss valleys

Loss valley



More general nonlinear symmetries
● Won’t exist in general
● In some cases, a data-dependent symmetry can be defined 
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More general symmetries for nonlinear NN



Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing 
systems 31 (2018).



Wider models ⇒ larger flat minima



Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast ensembling of dnns."  (NIPS 
2018).




