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Two types of symmetries
Symmetries in the data, processes or phenomena

e Usually, invariances of the distribution of data or features
e Used in group equivariant neural networks

Symmetries in the parameter space

e Invariances of the loss or objective function
e May arise from model and layer architecture

Zhao, Bo, lordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. "Symmetries, flat minima, and the conserved
quantities of gradient flow." ICLR 2023, arXiv preprint arXiv:2210.17216 (2022).

Yang, Jianke, Robin Walters, Nima Dehmamy, and Rose Yu. "Generative Adversarial Symmetry Discovery." arXiv preprint
arXiv:2302.00236 (2023).



Outline

e Parameter space symmetries (loss invariance)
o Exact and independent of data
o Data dependent, nonlinear symmetries
o Use case: Teleportation
e Data symmetries
o Discovering symmetries using LieGAN



Caspar David Friedrich Wanderer above the Sea of Fog, ca. 1817


https://www.artsy.net/artwork/caspar-david-friedrich-wanderer-above-the-sea-of-fog

What is the structure of the Loss landscape

e How much of the landscape can be predicted from the model architecture?
e Are there flat valleys?

https://peakvisor.com/park/grand-canyon-national-park.html



Mode connectivity
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Figure 1. A progressive understanding of the loss surfaces of neu-
ral networks. Left: The traditional view of loss in parameter space,
in which regions of low loss are disconnected (Goodfellow et al.,
2015; Choromanska et al., 2015). Center: The revised view of
loss surfaces provided by work on mode connectivity; multiple
SGD training solutions are connected by narrow tunnels of low
loss (Garipov et al., 2018; Draxler et al., 2018; Fort & Jastrzeb-
ski, 2019). Right: The viewpoint introduced in this work; SGD
training converges to different points on a connected volume of
low loss. Paths between different training solutions exist within a
large multi-dimensional manifold of low loss. We provide a two
dimensional representation of these loss surfaces in Figure A.1.

Benton, Greqgory, et al. "Loss surface simplexes for mode connecting

volumes and fast ensembling." ICML, PMLR, 2021.
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Figure 1: The ¢5-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a
function of network weights in a two-dimensional subspace. In each panel, the horizontal axis is
fixed and is attached to the optima of two independently trained networks. The vertical axis changes
between panels as we change planes (defined in the main text). Left: Three optima for independently
trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel a direct linear path between each mode would incur high loss.

Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast
ensembling of dnns." (NIPS 2018).
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Mode connectivity

Entezari, Rahim, et al. "The role of permutation

permutation

pefmutation

B

invariance in linear mode connectivity of neural

networks." arXiv preprint arXiv:2110.06296 (2021).

CIFAR-10, ResNet20 (32x width)

MNIST, MLP CIFAR-10, MLP
0.8 —7\eive 2.25-
—#~ Activation matching 2.0
0.6 —#— Weight matching 2.00
} : 1.5
—#— STE matching § 1.754 §
0.4+ i
~ 1.50 <L
0.2 1.25 0.5
0.0 1.004 0.0
T T T T T 1
Model A Model B Model A Model B Model A Model B
A A A
Ainsworth, S. K., Hayase, J., & Srinivasa, S. (2022). Git re-basin: Merging models modulo permutation symmetries

Git Re-Basin

Figure 1: Git Re-Basin merges models by tele-
porting solutions into a single basin. O p is per-
muted into functionally-equivalent 7(© ) so that
it lies in the same basin as © 4.
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Architecture < structure of loss landscape

“This partitioning of chaotic and convex regions may explain the importance of good
initialization strategies, and also the easy training behavior of “good” architectures.”
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Figure 7: For each point in the filter-normalized surface plots, we calculate the maximum and

minimum eigenvalue of the Hessian, and map the ratio of these two.

Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).



Extended valleys?

1. What aspects of the architecture produce extended valleys in the loss?
2. What parametrizes different points along a loss valley?

(a) ResNet-110, no skip connections (b) DenseNet, 121 layers
Figure 4: The loss surfaces of ResNet-110-noshort and DenseNet for CIFAR-10.

Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).



Short answer: Origin of low loss valleys

1. What aspects of the architecture produce extended valleys in the loss?
e Answer: Some valleys arise from continuous symmetries

2. What parametrizes different points along a loss valley?
e Answer: in symmetry induced valleys
Conserved quantities can parametrize the valley
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ABSTRACT

Empirical studies of the loss landscape of deep networks have revealed that many
local minima are connected through low-loss valleys. Ensemble models sam-
pling different parts of a low-loss valley have reached SOTA performance. Yet,
little is known about the theoretical origin of such valleys. We present a gen-
eral framework for finding continuous symmetries in the parameter space, which
carve out low-loss valleys. Importantly, we introduce a novel set of nonlinear,
data-dependent symmetries for neural networks. These symmetries can transform
a trained model such that it performs similarly on new samples. We then show
that conserved quantities associated with linear symmetries can be used to define
coordinates along low-loss valleys. The conserved quantities help reveal that us-
ing common initialization methods, gradient flow only explores a small part of
the global minimum. By relating conserved quantities to convergence rate and
sharpness of the minimum, we provide insights on how initialization impacts con-
vergence and generalizability. We also find the nonlinear action to be viable for
ensemble building to improve robustness under certain adversarial attacks.

ICLR 2023



Definitions

e “Loss”: combination of model architecture and loss function (e.g. MSE or
cross entropy loss)

Ex: Loss(W; X, Y) = MSE(F(W, X), Y) (F representing a neural net)

L : Param x Data — R, L0, (z,y)) = Cost(y, Fo(x)).

e “Symmetry”: Any transformation on model weights or data which keep loss
invariant.

L(g-0)=L(0), V0 € Param, g€ G




Continuous symmetries should produce valleys

e If there exist continuous symmetries of model parameters,
e Example: Linear regression, two layer linear network

1
LW:X,Y)=—|Y —=WX|?, W=UV
n

e For any linear reparamtrization W= UV :

U-v=0
—— |evel sets




Nonlinear case

e More tricky: continuous symmetries not guaranteed to exist for generic
nonlinear activation... But

LU, V)= z2]2=Us(V)|?

—— minimum — minimum ; — minimum

4/

(a) linear (b) ReLLU (c) sigmoid



General case using “equivariant™ activation
Consider a subnetwork with U = W, and V = W,_4

F(x) = Uo(Vz) for (U,V) € Param = R™*" x R"*" and € R"
Let G C GLj(R) be a subgroup and 7 : G — GLy,(R)be a representation.

f 0(9z) = m(g)o(z)

Then, this subnetwork has the symmetry

g-U=Un(g™"), g V=gV




Examples of |0(gz) = m(g)o(2)

e Linear network: Has GL symmetry (any invertible matrix g)

o(x) = x. One can take 7m(g) = g and G = GLj(R)

e Homogeneous: is symmetric under positive rescaling (diagonal matrices with
positive diagonal entries) ¢ = diag(c) withc = (c1,...,¢c;) € RY,

o(cz) = c%o(2)
[0(g2)]; = o(c;z;) = C?O'(Zi) = [g"o(2)];
o ReLU and LeakyReLU: Homogeneous of degree 1. Have positive rescaling symmetry

e Radial rescaling activation: U(Z) — f(HZH)Z
Symmetric under the orthogonal group g € O(h) (that is, g1 g = I)

o(9z) = f(llgzl)(gz) = g(f(lzl)z) = go(z)



Symmetry moves us along flat valley

e Is there a way to define
coordinates along flat directions?

e Are some places better than
others, or should we make an
ensemble from them (like “fast
ensembling” paper)?

Figure 1: The /-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a
function of network weights in a two-dimensional subspace. In each panel, the horizontal axis is
fixed and is attached to the optima of two independently trained networks. The vertical axis changes
between panels as we change planes (defined in the main text). Left: Three optima for independently
trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel a direct linear path between each mode would incur high loss.
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Continuous Symmetry = Extended local minima

Proposition 1.4. Suppose G is a symmetry of L acting linearly on Param. Then the gradients of
L at any 0 and g - 0 are related via:

Vg.0L p(g) = VoL, Vg € G, VO € Param (6)

Moreover, if @* is a critical point (resp. local minimum) of L, then so is g - 0*.

—  minimum

Dimension of generic orbit of group:

20 '!
e Linear: h®—max(0,h—n)max(0,h—m) , 151 ‘

10 +
e Homogeneous: min(h, max(n,m)) 5 |

e Radial:

(% if h < max(n,m) and () — ("~™2X(m") otherwise V °_,



How can we parameterize where along a
minimum we are?

— minimum




Q: Parameterizing where along a minimum we are?

A: Conserved quantities

During gradien flow (GF) some quantities remain
constant

GF: 0(t) =do(t)/dt = —EVQ(t),C.

Conservation of Q:

dQ(0(¢))/dt = 0

Figure 2: Gradient flow for L(U,V) =
Y —UVX|? where U,V € R,Y =
2, and X = 1. Trajectories correspond-
ing to different values of () intersect the
minima at different points.



Relating conserved Q to symmetries

dQ; _ <d9 0Q

dt E7 %> — = <€V0£, V0Q>

Symmetry condition: £(g-6) = L(0),

Infinitesimal version (VeL,M -0) =0 = <8_19, M-0> =0

d

Where M is a Lie algebra element Mg := pr

) (expy (t) - 0)

Proposition 2.1. Suppose the action of G on Param is linear® and leaves L invariant. For any
M € g, the function Qs : Param — R is a conserved quantity:

Qum(0) = (0, M -0) (17)

The space of distinct conserved quantities of the form Qs for M € g is in one-to-one correspon-
dence with the space of symmetric matrices in g.




Conserved Q for linear symmetries

Meg

M symmetric

M anti-symmetric

differential equation
6T MO =0

conserved quantity
Qr(0) = 6T M6

differential equation

2 5 _
Zz'<j M T Pij =0

e All conserved Qs in literature (known as “imbalance”) are for symmetric M

e Linear: Qu(U,V)=Tr[(VV' -U"U)M]

e Homogeneous (e.g. ReLU): Q — diag [VVT — aUTU]

e For antisymmetric M (e.g. O(h) rotation symmetry) angular momenta of
successive layers cancel. We could not identify an explicit for for Q for O(h).



Need for data-dependent symmetries.

e The symmetries discussed so far were linear and data-independent

Need for data-dependent symmetries. A symmetry of £ which is independent of the input data
transforms a set of parameters @ to 8’ = g- 0 such that the loss doesn’t change L(0’, X) = L(0, X).
However, this means that we have £(0’,X’) = L£(6,X) even on new data X', suggesting it is
impossible to use these symmetries to improve performance on OOD data. Hence, we conclude that
for a symmetry to yield any benefit on unseen data, it should be at least data-dependent. Therefore,
after reviewing linear symmetries, we introduce a set of data-dependent, nonlinear symmetries.



Non-linear group action

General Equivariance: o(g9z) = c(g, z)o(2) Vg € GLj, Vz € R"

c(g,2) = Ro(gz)R;(lz)

Theorem 4.1. Suppose o(z) is nonzero for any z € R™. Then there is an action GLj;, x (Param X
R™) — Param x R" given by

g- (U’ V,CE) — (URU(V:E)R;(lgVa;) ) gV ) CB) (7)
The evaluation of the feedforward function at x unchanged: Fy; vy(x) = Fur e R=L V) (2):

o(gVe)’



Zhao, B.. Dehmamy, N.. Walters, R., & Yu, R. (2022). Symmetry Teleportation for

Appl icatiOn : Telepo rtation Accelerated Optimization. Neurips 2022.

Symmetries can be used to move to points on the level-set with steeper gradients

dC(w) /OL dw\ T B 0
o = (G ) =~ (VAT 9L = vLl?

Proposition 5.1. Let w’' = g - w be a point we teleport to. Let J = 0w’ /0w be the Jacobian.
Symmetry teleportation using g accelerates the rate of decay in L if it satisfies

H [J‘llTW?(w)Hi > VL), - (10)

A @a =

Figure 1: Left to right: gradient descent, second-order methods, proposed method.


https://arxiv.org/pdf/2205.10637.pdf
https://arxiv.org/pdf/2205.10637.pdf

Ex: Rosenbrock
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Figure 2: Optimization of the Rosenbrock function (top row) and Booth function (bottom row) using
(a) gradient descent and (b) the proposed algorithm. Contours represent the level sets of the loss
function. Loss £ and convergence rate dL/dt are shown in (c) and (d). Teleportation helps move the
parameters towards the target.
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numbers in teleportation schedule where teleportation happens.



Conclusion

e Model architecture can result in a lot of continuous symmetries in the loss
landscape

e The symmetries can be used to move to more favorable parts along minima

e Nonlinear, data-dependent symmetries may be useful for generalization

e Further works is needed



Generative Adversarial Symmetry Discovery

Jianke Yang! Robin Walters > Nima Dehmamy “> Rose Yu!

Table 1. Comparison of different models’ capability of discovering
different kinds of symmetries

SYMMETRY MSR AUGERINO |LIEGAN
DISCRETE v X v
CONTINUOUS X X v
GIVEN GROUP SUBSET X v v
UNKNOWN GROUP SUBSET X X v




LieGAN

Learn Lie algebra to generate transformations to fool discriminator

w ~ 7w)

N

X,y

Generator

v

L

w

= eZw

| |
8X, 8y

|

Discriminator

—» Real/fake



2-body gravitation system
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Discover Lorentz Symmetry from particle physics data
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Figure 4. Left: LieGAN discovers an approximate SO(1,3)™ symmetry in top tagging dataset, where channels 0, 1, 3 indicate boost
along x-, y- and z-axis and channels 2, 5, 6 correspond to SO(3) rotation. Right: Computed invariant metric of the discovered symmetry
by solving Equation (10).
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Noether’'s Theorem

Every continuous symmetry leads to conserved quantities during dynamics

e Can conserved quantities define coordinates along loss valleys?
e Is Noether’s theorem applicable to g-U,V)

= minimum

gradient descent? 20 1




Imbalance: A conserved quantity in gradient descent (GD)

Algorithmic Regularization in Learning Deep
Homogeneous Models: Layers are Automatically
Balanced”

Consider the following formulation for factorizing a low-rank matrix:

. 1 2 ) ) ,
min f (U, V) = — HUVT _ M* HF ’ Simon S. Duf Wei Hut Jason D. Lee!
UcR1 %7 VeRd2Xxr 2

Abstract

1 We study the implicit regularization imposed by gradient descent for learning
L H b | UT U VT V 2 multi-layer homogeneous functions including feed-forward fully connected and
aye r I m a a n Ce = - F convolutional deep neural networks with linear, ReLU or Leaky ReLU activation.

8 We rigorously prove that gradient flow (i.e. gradient descent with infinitesimal

step size) effectively enforces the differences between squared norms across dif-

. ferent layers to remain invariant without any explicit regularization. This result

| S CO n Se rved d u rl n g G D implies that if the weights are initially small, gradient flow automatically balances
the magnitudes of all layers. Using a discretization argument, we analyze gradient

descent with positive step size for the non-convex low-rank asymmetric matrix

factorization problem without any regularization. Inspired by our findings for gra-

dient flow, we prove that gradient descent with step sizes 7y = O (t’(%“s))

0 <6< %) automatically balances two low-rank factors and converges to a
bounded global optimum. Furthermore, for rank-1 asymmetric matrix factoriza-
tion we give a finer analysis showing gradient descent with constant step size
converges to the global minimum at a globally linear rate. We believe that the
idea of examining the invariance imposed by first order algorithms in learning
homogeneous models could serve as a fundamental building block for studying
optimization for learning deep models.

NeurlPS 2018



Imbalance: A conserved quantity in gradient descent (GD)

For homogeneous nonlinearity, imbalance is conserved during GD

Theorem 2.1 (Balanced incoming and outgoing weights at every neuron). For any h € [N — 1| and
i € [nn], we have

d
1 (IWOLAP = WL 017) =0 ©®

e Could imbalance be related to symmetries?



Published as a conference paper at ICLR 2021

Rescaling = Imbalance

, NEURAL MECHANICS: SYMMETRY AND BROKEN CON-
Noether’s theorem shows that when SERVATION LAWS IN DEEP LEARNING DYNAMICS

a m Od eI iS i nva ri a nt u n d e r res cal i n g Daniel Kunin*, Javier Sagastuy-Brena, Surya Ganguli, Daniel L.K. Yamins, Hidenori Tanaka*'
of weights of two layers, the Stanford University ,
1 Physics & Informatics Laboratories, NTT Research, Inc.
imbalance between the two layers is
conserved

ABSTRACT

Understanding the dynamics of neural network parameters during training is one of
the key challenges in building a theoretical foundation for deep learning. A central
obstacle is that the motion of a network in high-dimensional parameter space

Translation: < (t) X ]]_> < (0)7 :H_> undergoes discrete finite steps along complex stochastic gradie.nts derived fr.om

real-world datasets. We circumvent this obstacle through a unifying theoretical

2 2 framework based on intrinsic symmetries embedded in a network’s architecture

Scale: ‘0 A (t) | = |0 A ( ) | that are present for any dataset. We show that any such symmetry imposes strin-

9 5 5 5 gent geometric constraints on gradients and Hessians, leading to an associated

R l . _ — _ conservation law in the continuous-time limit of stochastic gradient descent (SGD),
escale: ’0"41 (t) ‘ |0'A2 (t> | |0‘A1 (O) | |0‘A2 (O) | akin to Noether’s theorem in physics. We further show that finite learning rates

used in practice can actually break these symmetry induced conservation laws.
We apply tools from finite difference methods to derive modified gradient flow,
a differential equation that better approximates the numerical trajectory taken by
SGD at finite learning rates. We combine modified gradient flow with our frame-
work of symmetries to derive exact integral expressions for the dynamics of certain
parameter combinations. We empirically validate our analytic expressions for
learning dynamics on VGG-16 trained on Tiny ImageNet. Overall, by exploiting
symmetry, our work demonstrates that we can analytically describe the learning
dynamics of various parameter combinations at finite learning rates and batch sizes
for state of the art architectures trained on any dataset.



How?

e Noether’s theorem works specifically with “Lagrangians”.
e The dynamics is defined via a variational principle
e How can GD be written in this language, as a variational equation?



How?

= If we approximate gradient descent using a second-order continuous gradient
flow, the dynamics can be derived from a variational Lagrangian

x = model parameters (weights)

V =loss
.. 02
x(t + 0t) = x + dtx + - &
ox
— =—eVV
ot °©
ot .

2nd order gradient flow (GF) r=—VV — 5:13




Lagrangian formulation of 2nd order gradient flow

Bregman Lagrangian (also used in Tanaka & Kunin NeurlPS 2021)
( x=weights, V=loss, e=learning rate, y = 2/6x)

1 . .
L=e¢" (555151,—],1553 — ”YV(SE))

Variational (Euler-Lagrange) equations:

0=

1
e i=—eVV - =&

— =
Or dt Ox Y

When v — oo, we get the first-order gradient flow:
Tz =—eVV

: ot ..
x=—-—€eVV—-—-zI




Noether’s theorem for 2nd order GF

Let O denote an infinitesimal continuous symmetry transformation. Then the
following Q is conserved (dQ/dt=0) during the GF dynamics

oL
ox
Let 0 = T'x where T is an infinitesimal symmetry generator (e.g. Lie algebra)
27 t.—1, t T _.—1, t TrT _—1,;
Q=0c—=Tx) - (e z)=e"Tx) e =" T e

oz



Conserved quantity decays to zero

For symmetries with linear action (matrix product)

Let Qo = 2TTTe~14. Th aQ . on) _
etQop == e~ *z. Then - _ gt (ny0+ - 0
YQo = _ = Qo(t) =e 7" Qo(0)

dt

= in the limit of 1st order GF (v — o0))
Noether’s theorem predicts Qo(t) decays to zero
exponentially
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Examples
For symmetries with linear group action (matrix product)

Symmetry group is a subgroup of GL _(general linear group: invertible matrices)

T can be split into:

1. S: symmetric (scaling and hyperbolic)
2. A: antisymmetric (rotations)

dQcr
dt

Ocr = % (TrlUSU" ] - Tr[V ' SV])

— 221 S%

S: generalizes imbalance

For UV:



Antisymmetric generators (rotations)
Conserved Q: a particular angle is conserved

Ex: 2D rotation

J=aTAz = (z1 z2) (_01 é) (i;)

= Qflfﬁz — xgx'l
= (rcos ) (sin @ + rcos 00) — (rsin 0) (7 cos § — rsin 06)

_ 2



Conserved quantities parametrize loss valleys

e (Q can be used to define coordinate along symmetry-induced loss valleys

Loss valley 2 u



More general nonlinear symmetries

e \Won't exist in general
e |n some cases, a data-dependent symmetry can be defined

L=¢e" (|U|2 ; 145 — 7L(U0(VX))>

g-(UV,X)=(g-U,g-V,g-X)=(Uc(VX)o(gVX) 1 gV, X).



Noether’s Learning Dynamics:
Role of Symmetry Breaking in Neural Networks

Hidenori Tanaka'* , Daniel Kunin?
1Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, USA
2Stanford University, Stanford, CA, USA

Abstract

In nature, symmetry governs regularities, while symmetry breaking brings texture.
In artificial neural networks, symmetry has been a central design principle to
efficiently capture regularities in the world, but the role of symmetry breaking is not
well understood. Here, we develop a theoretical framework to study the geometry
of learning dynamics in neural networks, and reveal a key mechanism of explicit
symmetry breaking behind the efficiency and stability of modern neural networks.
To build this understanding, we model the discrete learning dynamics of gradient
descent using a continuous-time Lagrangian formulation, in which the learning
rule corresponds to the kinetic energy and the loss function corresponds to the
potential energy. Then, we identify kinetic symmetry breaking (KSB), the condition
when the kinetic energy explicitly breaks the symmetry of the potential function.
We generalize Noether’s theorem known in physics to take into account KSB and
derive the resulting motion of the Noether charge: Noether’s Learning Dynamics
(NLD). Finally, we apply NLD to neural networks with normalization layers
and reveal how KSB introduces a mechanism of implicit adaptive optimization,
establishing an analogy between learning dynamics induced by normalization
layers and RMSProp. Overall, through the lens of Lagrangian mechanics, we have
established a theoretical foundation to discover geometric design principles for the
learning dynamics of neural networks.
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More general symmetries for nonlinear NN



(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing
systems 31 (2018).



Wider models = larger flat minima
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Figure 6: Wide-ResNet-56 on CIFAR-10 both with shortcut connections (top) and without (bottom).
The label £ = 2 means twice as many filters per layer. Test error is reported below each figure.



Loss Surfaces, Mode Connectivity,
and Fast Ensembling of DNNs
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Figure 1: The /5-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a
function of network weights in a two-dimensional subspace. In each panel, the horizontal axis is
fixed and is attached to the optima of two independently trained networks. The vertical axis changes
between panels as we change planes (defined in the main text). Left: Three optima for independently
trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,

connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel a direct linear path between each mode would incur high loss.
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Timur Garipov*? Pavel Izmailov*3> Dmitrii Podoprikhin**
Dmitry Vetrov® Andrew Gordon Wilson?

'Samsung AI Center in Moscow, 2Skolkovo Institute of Science and Technology,
3Cornell University,
4Samsung-HSE Laboratory, National Research University Higher School of Economics,
SNational Research University Higher School of Economics

Abstract

The loss functions of deep neural networks are complex and their geometric
properties are not well understood. We show that the optima of these complex
loss functions are in fact connected by simple curves over which training and test
accuracy are nearly constant. We introduce a training procedure to discover these
high-accuracy pathways between modes. Inspired by this new geometric insight,
we also propose a new ensembling method entitled Fast Geometric Ensembling
(FGE). Using FGE we can train high-performing ensembles in the time required to
train a single model. We achieve improved performance compared to the recent
state-of-the-art Snapshot Ensembles, on CIFAR-10, CIFAR-100, and ImageNet.

Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast ensembling of dnns." (NIPS

2018).



Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling

Gregory W. Benton'! Wesley J. Maddox ' Sanae Lotfi'! Andrew Gordon Wilson !

Abstract

With a better understanding of the loss surfaces
for multilayer networks, we can build more robust
and accurate training procedures. Recently it was
discovered that independently trained SGD so-
lutions can be connected along one-dimensional
paths of near-constant training loss. In this paper,
we show that there are in fact mode-connecting
simplicial complexes that form multi-dimensional
manifolds of low loss, connecting many indepen-
dently trained models. Inspired by this discov-
ery, we show how to efficiently build simplicial
complexes for fast ensembling, outperforming
independently trained deep ensembles in accu-
racy, calibration, and robustness to dataset shift.
Notably, our approach only requires a few train-
ing epochs to discover a low-loss simplex, start-
ing from a pre-trained solution. Code is avail-
ableat https://github.com/g-benton/
loss—-surface-simplexes.
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Figure 1. A progressive understanding of the loss surfaces of neu-
ral networks. Left: The traditional view of loss in parameter space,
in which regions of low loss are disconnected (Goodfellow et al.,
2015; Choromanska et al., 2015). Center: The revised view of
loss surfaces provided by work on mode connectivity; multiple
SGD training solutions are connected by narrow tunnels of low
loss (Garipov et al., 2018; Draxler et al., 2018; Fort & Jastrzeb-
ski, 2019). Right: The viewpoint introduced in this work; SGD
training converges to different points on a connected volume of
low loss. Paths between different training solutions exist within a
large multi-dimensional manifold of low loss. We provide a two
dimensional representation of these loss surfaces in Figure A.1.



