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When data is not perfectly symmetric 

Noisy observations

Unknown external forces

Unknown boundary conditions

Observations not aligned with 

symmetry or symmetry breaking 

background

Dian Wang, Jung Yeon Park, Neel Sortur, Lawson L.S. Wong, Robin Walters, Robert Platt; The Surprising Effectiveness of Equivariant Models in Domains with Latent Symmetry; ICLR 2023

Tess E. Smidt, Mario Geiger, Benjamin Kurt Miller; Finding symmetry-breaking Order Parameters with Euclidean Neural Networks; Physical Review Research 3 (1), L012002

The output has lower symmetry 

than the input
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When data is not perfectly symmetric 

An ideal model should automatically learn correct amount of symmetry.
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Group Convolution Networks

∗ =

𝑓!": ℤ# → ℝ

𝑒

𝑟

𝑟!

𝑟"

𝑓$%&: ℤ# ⋊ 𝐶' → ℝ

Lift Convolution Layer：

 𝑓#$% 𝒙, 𝑟 = 𝑓&' ∗ 𝜓 𝒙 = ∑𝒚∈ℤ! 𝑓&' 𝒚 𝜓+ 𝒚 − 𝒙 , 𝒙, 𝑟 ∈ ℤ! ⋊ 𝐶,

Taco S. Cohen Max Welling ; Group Equivariant Convolutional Networks; ICML 2016
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𝑓!": ℤ# ⋊ 𝐶' → ℝ

∗ =

𝑒

𝑟

𝑟!

𝑟"

𝑓$%&: ℤ# ⋊ 𝐶' → ℝ

Taco S. Cohen Max Welling ; Group Equivariant Convolutional Networks; ICML 2016

Group Convolution Layer：

 𝑓#$% 𝒙, 𝑟 = 𝑓&' ∗ 𝜓 𝒙, 𝑟 = ∑+"∈-#∑𝒚∈ℤ! 𝑓&' 𝒚, 𝑟 𝜓 𝒓.𝟏 𝒚 − 𝒙 , 𝑟.0𝑟1 , 𝒙, 𝑟 ∈ ℤ! ⋊ 𝐶,

Group Convolution Networks
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𝑓!": ℤ# ⋊ 𝐶' → ℝ

∗ =

𝑤 𝑒 ×

𝑤(𝑟)×

𝑤(𝑟!)×

𝑤(𝑟")×

𝑓$%&: ℤ# ⋊ 𝐶' → ℝ

Relaxed Group Convolution Networks

Relaxing weight-sharing constraints by introducing group element dependent parameters.
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𝑓!": ℤ# ⋊ 𝐶' → ℝ

∗ =

0.5 ×

0.5 ×

0.5 ×

0.5 ×

𝑓$%&: ℤ# ⋊ 𝐶' → ℝ

Relaxed Group Convolution Networks

Relaxing weight-sharing constraints by introducing group element dependent parameters.
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𝑓!": ℤ# ⋊ 𝐶' → ℝ

∗ =

0.8 ×

0.5 ×

0.8 ×

0.5 ×

𝑓$%&: ℤ# ⋊ 𝐶' → ℝ

Relaxed Group Convolution Networks

Relaxing weight-sharing constraints by introducing group element dependent parameters.
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𝑓!": ℤ# ⋊ 𝐶' → ℝ

∗ =

0.51 ×

0.50 ×

0.53 ×

0.54 ×

𝑓$%&: ℤ# ⋊ 𝐶' → ℝ

Relaxed Group Convolution Networks

Relaxing weight-sharing constraints by introducing group element dependent parameters.
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𝑓!": ℤ# ⋊ 𝐶' → ℝ

∗ ( =

𝑤0(𝑒)

𝑤0(𝑟)

𝑤0(𝑟!)

𝑤0(𝑟") 𝑓$%&: ℤ# ⋊ 𝐶' → ℝ

Relaxed Group Convolution Networks

𝑤!(𝑒)

𝑤!(𝑟)

𝑤!(𝑟!)

𝑤!(𝑟")

… )+ +

[𝑓 ⋆ 𝜓] 𝑔 =@
2∈3

𝑓 ℎ 𝜓 𝑔, ℎ =@
2∈3

@
450

6
𝑓 ℎ 𝑤4(ℎ)𝜓4(𝑔.0ℎ) ,
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Relaxed Group Convolution Networks

𝑿

𝒀

ü Proposition (informal): The relaxed weights will learn to be distinct across group elements 

during training in a way such that the model is equivariant to 𝑆𝑡𝑎𝑏(𝑋) 	∩ 	𝑆𝑡𝑎𝑏(𝑌)
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Relaxed Group Convolution Networks

𝑩𝒂𝑻𝒊𝑶𝟑

𝒓𝒄𝟐𝟕𝟎

𝒓𝒄𝟏𝟖𝟎

𝒓𝒄𝟗𝟎

𝒆

𝒎𝟏

𝒎𝟐

𝒎𝟏

𝒓𝒂𝟏𝟖𝟎

𝒓𝒂𝟗𝟎

𝒆

𝒓𝒂𝟐𝟕𝟎

Cubic (𝑃𝑚$3𝑚) Tetragonal (𝑃4𝑚𝑚) Orthorhombic (𝐴𝑚𝑚2)

𝒎𝟏

𝒎𝟐

𝒓𝒂𝟏𝟖𝟎

𝒓𝒂𝟗𝟎

𝒆

𝒓𝒂𝟐𝟕𝟎

𝒆𝒓𝒄𝟏𝟖𝟎

𝒓𝒄𝟗𝟎

𝒓𝒄𝟐𝟕𝟎
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Relaxed Steerable Convolution Network

Steerable Kernels： 𝜙 𝑔𝑥 = 𝜌#$% 𝑔 𝜙 𝑥 𝜌&' 𝑔.0 , ∀𝑔 ∈ 𝐺

 𝑓!"# 𝒙 = ∑𝒚∑%&'( (𝑤%⊙𝜙%(𝒚))𝑓%) 𝒙 + 𝒚 ∑𝒚∑%&'( (𝑤% 𝒚 ⊙ 𝜙%(𝒚))𝑓%) 𝒙 + 𝒚

Maurice Weiler , Gabriele Cesa; General E(2) - Equivariant Steerable CNNs; NeurIPS 2019
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14

𝑇(
)*+,-𝒘 𝒙, 𝑡 = 𝜆𝒘 𝜆𝒙, 𝜆#𝑡 , 𝜆 ∈ ℝ./

Scaling

𝑇00$&𝒘 𝒙, 𝑡 = 𝑅𝒘 𝑅12𝒙, 𝑡 , 𝑅 ∈ 𝑆𝑂(2)

Rotation

𝑇𝒄4+,𝒘 𝒙, 𝑡 = 𝒘 𝒙 − 𝒄𝑡, 𝑡 + 𝒄, 𝒄 ∈ ℝ#

Galilean

𝑇𝒗
67𝒘 𝒙, 𝑡 = 𝒘 𝒙 − 𝒗, 𝑡 , 𝑣 ∈ ℝ#

Translation

Symmetries of Navier-Stoke Equation
𝝏𝒘/𝝏𝒕	 + 𝒘 ' 𝜵 𝒘 = −𝟏/𝝆𝟎𝜵𝒑 + 	𝝂∆𝒘 + 𝒇

Rui Wang*, Robin Walters*, Rose Yu; Incorporating symmetry into deep dynamics models for improved generalization, ICLR 2021.
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15

3D Turbulence Super-Resolution
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16

3D Turbulence Super-Resolution

Target Trilinear NonEquiv Equiv Relaxed Equiv
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Smoke Plume Simulation

The initial velocities varies with the inflow 
positions to break the rotation symmetry

The buoyant forces are different 
at different subdomains

Dynamics Forecasting： 𝒇𝜽(𝒖𝒕,𝒒, … , 𝒖𝒕) = 0𝒖#.', … , 0𝒖#./
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Smoke Plume Simulation

The buoyant forces are different 
at different subdomains

Dynamics Forecasting： 𝒇𝜽(𝒖𝒕,𝒒, … , 𝒖𝒕) = 0𝒖#.', … , 0𝒖#./

v Learn different levels of equivariance

Ours

EquivNon-Equiv



Atomic ArchitectsAtomic Architects

Summary
ü Relaxed group convolution networks always maintain the highest level of 

equivariance that is consistent with data.

ü The relaxed weights can be used to discover the symmetry and symmetry-

breaking factors in the data.

ü Superior performance on turbulence super-resolution and predictions.

ü Future works including investigating the benefits of relaxed weights in

optimization and finding more potential in material science.
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