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A note on the title
(let’s see if we can get to displacement structures!).
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Approximate Equivariance

Most relevant to us:

|f(ρin(g)x)− ρout(g)f(x)| < ε

Real world symmetries are rarely exact
Not to be confused with partial symmetries.
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Approximate Equivariance

Figure from: Wang, Walters, and Yu ICML 2022

There is a common intuition that there is a sweet spot for balancing
between model and data equivariance that can lead to good
generalization

How do we show this is the case?
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Some Theoretical Developments

An Approximate Survey
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Some Axes of Theoretical Development

1 Architectural Characterizations
▶ Discrete groups: Equivariance and Parameter Sharing.

Ravanbaksh, Schneider, Poczos, ICML 2017

▶ Convolution ⇐⇒ Equivariance (Kondor & Trivedi); scalar fields,
general compact groups, ICML 2018.

▶ Convolution ⇐⇒ Equivariance (Cohen, Geiger, & Weiler);
steerable case, general compact groups, NeurIPS 2020
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Some Axes of Theoretical Development

1 Architectural Characterizations
▶ Convolution ⇐⇒ Equivariance (extensions): Aronsson, Olhsson,

Persson et al.

▶ Classification of equivariant networks; space of invariant networks.
Agrawal and Ostrowski, 2022 NeurIPS, 2023.

▶ Characterization of Linear Layers:
- Sn, Maron, Ben-Hamu, Shamir, Lipman, ICLR 2019
An, Sp(n), O(n), SO(n), Pearce-Crump 2023a, 2023b, 2023c.

▶ Similar for Quantum group equivariant neural networks.
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Some Axes of Theoretical Development

2 Fourier picture
▶ For scalar fields, Kondor & Trivedi, 2018

▶ For the steerable case, Xu, Lei, Dobriban, & Daniilidis, ICML 2022.
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Some Axes of Theoretical Development

3 Universality Results

▶ Large body of work at this point: Yarotsky, 2018; Keriven & Peyre,
2019; Sannai et al., 2019; Maron et al., 2019; Segol & Lipman,
2020; Ravanbakhsh, 2020.

4 More Universality Results
▶ Barron’s analogue for equivariant networks, Lawrence 2022.
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Some Axes of Theoretical Development

4 Generalization/Sample Complexity
▶ Initial results go back to John-Shawe Taylor

▶ A whole body of work on group NNs (1989, 1991, 1993, 1995)
▶ Jeffrey Wood (1996)
▶ Elsedy & Zaidi, ICML 2021: Strict generalization benefit for

equivariant linear models. Generalization gap depends on the
dimension of the space of anti-symmetric linear maps.

5 PAC-Bayesian Style Bounds:
▶ Behboodi, Cesa, & Cohen, NeurIPS 2022.
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Some Axes of Theoretical Development

6 Augmentation:

▶ A theory for data augmentation, Chen, Dobriban, Lee, NeurIPS
2020, JMLR 2021; Lyle, van der Wilk, et al., ICML 2020.

7 Expressivity
▶ Group invariant capacity, Farrell, Bordelon, Trivedi, Pehlevan, ICLR

2022.
8 Partial, approximate and Incorrect
▶ e.g. Wang, Zhu, Park, Platt, & Walters
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Mircea Petrache
Pontificia Universidad Católica de Chile
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Goals for [no longer a] Vignette One

▶ Part 1: Sketch quantitative bounds for the common intuition that
model respecting underlying symmetries afford better
generalization

▶ Part 2: Use above to tease out dependence on the optimal
equivariance error due to model symmetries and the equivariance
error due to data symmetries

▶ Overall Goal: Theoretically understand the dependence of optimal
model equivariance for data with pre-specified symmetries.
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Approximate Equivariance

Figure from: Wang, Walters, and Yu ICML 2022

There is a common intuition that there is a sweet spot for balancing
between model and data equivariance that can lead to good
generalization
How do we show this is the case?
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How does the picture look like?

Courtesy: J. Berner

▶ Blue is the exemplary risk, red is the empirical risk [with respect to
the projected space of measurable functions M(X ,Y))]
R∗ is the so-called Bayes Risk.
Usual picture: Error: εapprox + εopt + εgen
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Generalization Error

Improved Generalization with Equivariance
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Let’s Dive Straight In! – Initial Setup

Consider a family of functions F̃ ⊂ {f̃ : X → Y}

... and a loss function ℓ : X × Y → R+

Fix a distribution for data Z = (X,Y ) ∽ D and consider samples
drawn i.i.d Zi = (Xi, Yi)

Work with random functions f(x, y) := ℓ(f̃(x), y) and define:

F := {f : f̃ ∈ F̃}, Pf := E[f(X,Y )], and Pnf :=
1

n

n∑
i=1

f(Xi, Yi)

Reminder: Usually care about sup
f∈F

Pf − Pnf
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Initial Setup: Group Case
Group G acts over X , Y
... and transforms any f̃ ∈ F̃ into g · f̃ , so x 7→ g−1 · f̃(g · x)

Get a new set G · f := {g · f̃ : g ∈ G} having orbits of a given f̃

Note: If all f̃ ∈ F̃ are invariant i.e. G · f̃ = {f̃}, then,

Pf = EgEZ [f(g · Z)], Pnf =
1

n

n∑
i=1

Egf(g · Zi)

g is a random variable, uniformly distributed over compact G
▶ More: Ulf Grenander, Probabilities on Algebraic Structures 1967
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Preliminary: Family of Invariant Functions

We considered:

F := {f : f̃ ∈ F̃}, Pf := E[f(X,Y )], and Pnf :=
1

n

n∑
i=1

f(Xi, Yi)

And:
Pf = EgEZ [f(g · Z)], Pnf =

1

n

n∑
i=1

Egf(g · Zi)

Lemma

Assume F̃ consists of G-equivariant functions, and F consists of

G-invariant functions. Let DG :=
1

|G|

∫
G
g ·Ddg, then generalization

errors for F̃ for D and DG are the same.
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Invariant Functions

PAC style bounds have been studied for invariant functions F in
many previous works

▶ Sannai et al. (2019); Sokolic et al. (2017); Zhu et al. (2021)

Equivalent to concentration bounds.
Let’s focus on bounds roughly of the type:

P
[
sup
F

(P − Pn)f ≥ R(FZ) + ϵ

]
≤ 2 exp

(
− ϵ2n

2∥F∥∞

)
,

Shubhendu Trivedi Approximate Equivariance



Invariant Functions

PAC style bounds have been studied for invariant functions F in
many previous works

▶ Sannai et al. (2019); Sokolic et al. (2017); Zhu et al. (2021)
Equivalent to concentration bounds.
Let’s focus on bounds roughly of the type:

P
[
sup
F

(P − Pn)f ≥ R(FZ) + ϵ

]
≤ 2 exp

(
− ϵ2n

2∥F∥∞

)
,

Shubhendu Trivedi Approximate Equivariance



Usual Argument

Let’s focus on bounds roughly of the type:

P
[
sup
F

(P − Pn)f ≥ R(FZ) + ϵ

]
≤ 2 exp

(
− ϵ2n

2∥F∥∞

)
,

▶ ∥F∥∞ := sup
f∈F

∥f∥∞ = sup
f∈F

sup
(x,y)∈X×Y

|f(x, y)|

▶ ... and the Rademacher complexity:

R(FZ) := Eσ sup
F

1

n

n∑
i=1

σif(Zi)

▶ Zi = (Xi, Yi), and σ = (σ1, σ2, . . . , σn) are the so-called
Rademacher random variables, distributed uniformly over {−1, 1}n
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[
sup
F

(P − Pn)f ≥ R(FZ) + ϵ
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≤ 2 exp

(
− ϵ2n

2∥F∥∞

)
,
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f∈F

∥f∥∞ = sup
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sup
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Usual Argument Continued..

Want to bound R(FZ)

One path: Use the Dudley entropy integral

R(FZ) ≤ inf
α>0

(
4α+

12√
n

∫ ∞

α

√
lnN (F , t, ∥ · ∥∞)dt

)
Use this covering number: N (F , t, ∥ · ∥∞) :=

min

{
k : ∃{f1, . . . , fk} ⊂ F ,max

f∈F
min
1≤j≤k

∥fj − f∥∞ ≤ t

}
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What happens with G-Equivariance?

Consider the case where we have exact equivariance: D = g ·D i.e.
the equivariance errors eeq1 (D) = eeq∞(D) = 0

There are two equivalent ideas that can help improve generic
bounds of the type discussed
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What happens with G-Equivariance? – Idea 1

1 Replace F by a set of G-orbit representatives F0

- Probabilities and expectations don’t change

- Need to bound R(F0
Z)

- Need to analyze the smaller covering number N (F0, t, ∥ · ∥∞)
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What happens with G-Equivariance? – Idea 2

2 Avoid the issue of choice of orbit representatives by considering
orbits traced by our functions.

- Instead of f1, . . . , fk, take their orbits G · f1, . . . , G · fk

- Need to analyze the covering number NG(F , t, ∥ · ∥∞) :=

min

{
k : ∃{f1, . . . , fk} ⊂ F ,max

f∈F
min

1≤j≤k

(
min
g∈G

∥g · fj − f∥∞
)}
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Improvement with G-Equivariance

Improvement on bounds compared to the non-equivariant case is
controlled by the following quantity:

NG(F , t, ∥ · ∥∞)

N (F , t, ∥ · ∥∞)

Rough strategy to bound for equi-Lipschitz functions:

Discretize domain and co-domain for all f

Reduce covering number problem for X × Y to independent
problems

Each problem deals with orbit representatives X0 and covering G

▶ Has appeared in some works in different contexts (Chen et al.,
2023).
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Improvement with G-Equivariance

▶ Can get bounds for G-equivariance... but then what?
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Only Part of the Story

Courtesy: J. Berner

▶ Blue is the exemplary risk, red is the empirical risk
R∗ is the so-called Bayes Risk.
Usual picture: Error: εapprox + εopt + εgen

Have only considered the generalization error!
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Approximation Error

Model Equivariance versus Data Equivariance
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What about the Approximation Error?

Suppose we have data with approximate symmetries and model
equivariance does not exactly correspond to data equivariance

Want to get a quantitative estimate (explicit formulae) of the
approximation error lower bound due to the mismatch
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Sketch of Idea:Setup

Fix F̃ to be the set of G-equivariant functions.

Let’s first compare to measurable functions M(X ,Y).
Assume non-degeneracy on the loss f(Z) = ℓ(f̃(X), Y ) and set

M′ := {F (x, y) = ℓ(m(x), y),m ∈ M}

Want to get a quantitative estimate (explicit formulae) of the
approximation error lower bound due to the mismatch
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Sketch of Idea: First Steps

Fix random variables (X,Y ) ∽ D, denote X0 as G-orbit
representatives in X

X = g · X̄, with g ∈ G, X̄ ∈ X0

g and X̄ are now random variables =⇒ distributions of
g · X̄, Y ≃ (X,Y )

Distributions of the three objects can be obtained by suitable
projections:

- Of X̄, denoted DX̄ = πX0
πXD

- Of g, denoted Dg = Dg|X̄DX̄

- Of Y , denoted DY = DY |g,X̄Dg|X̄DX̄
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Approximation Error: Data Equivariance

To get approximation error while working with all measurable
f : X → Y set f(x) = y, where:

y ∈ argminEY |g=gx,X̄=x̄ ℓ(y, Y )

▶ Assumes x = gxx̄ is the unique expression of of x if gx ∈ G acts on
x̄ ∈ X0

Replace x by X, and obtain:

AppErrequi(D, ℓ) = EX̄ min
y

Eg|X̄EY |g,X̄ℓ(y, Y )
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Approximation Error: Model Equivariance

Getting approximation error for equivariant measurable functions
f : X → Y, corresponds to optimizing over f |X0

y ∈ argminEg|X̄=x̄EY |g,X̄=x̄ ℓ(y, Y )

Replace x̄ by X̄, and we get the error:

AppErr(D, ℓ) = EX̄Eg|X̄ min
y

EY |g,X̄ ℓ(y, Y )
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Approximation Gap: Model versus Data Equivariance

The error terms that we obtained:

AppErr(D, ℓ) = EX̄Eg|X̄ min
y

EY |g,X̄ ℓ(y, Y )

AppErrequi(D, ℓ) = EX̄ min
y

Eg|X̄EY |g,X̄ℓ(y, Y )

Clearly: AppErr(D, ℓ) ≤ AppErrequi(D, ℓ)

How much is the gap?
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Approximation Gap: Model versus Data Equivariance

We had AppErr(D, ℓ) ≤ AppErrequi(D, ℓ)

Leading to the following expression for the approximation gap:

AppGap(D, ℓ) = EX̄ min
y∈Y

Eg|X̄
(
LX̄(g, y)− LX̄(g, y∗g)

)
Where LX̄(g, y) := EY |g,X̄ℓ(y, Y )

.. and y∗ ∈ argmin
y

LX̄(g, y)
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Approximation Gap

With some technical conditions on the loss, we will have
(simplified):

AppGap(D,CL∥ · ∥2) ≥ CLEX̄ Var g|X̄
[
y∗g
]

Can obtain explicit formulae in many cases, also reasonably easy
to compute
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Approximation Gap

Courtesy: Wang, Walters, and Yu

The sweet spot for better generalization occurs when the
generalization and approximation error plots cross.

Note: Skipped handling optimization error. But the picture remains
similar with added caveats.
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Learning Partial Symmetries

Exploiting Displacement Structure

Shubhendu Trivedi Approximate Equivariance



Ashwin Samudre
U. British Columbia

Brian D. Nord
MIT Physics/Fermilab

Shubhendu Trivedi Approximate Equivariance


