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To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate systems
to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of Euclidean space (1 )
(3D rotations, translations, and inversion)
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To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate systems
to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of Euclidean space (1 )
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!




Machine learning models not built to handle symmetry require data augmentation.
For 3D data, this is expensive, requiring ~500 fold augmentation.
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To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate systems
to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of Euclidean space (1 )
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!

We want methods that see

(1) and (2) as the same system
described differently...

...S0 want machine learning
with symmetry! 6



Invariant models pre-compute invariant features and throw away the coordinate system.
Equivariant models keep the coordinate system
AND if the coordinate system changes, the outputs change accordingly.
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Interactions in equivariant models are more complex than invariant models.

How do we interact invariant objects? Scalar multiplication.

B x [ = B

X l=/

How do we interact equivariant objects? Geometric tensor products!

/ R \=lll [

il - % O LI Ol

dot product cross-product symmetric
. . trace antisymmetric traceless
Generalizes to h{gher orders. . invariant equivariant equivariant
Same mathematics that describes L=0 L=1 L=2
atomic interactions, e.g. addition of 1 degree of 3 degrees of 5 degrees

angular momentum. freedom freedom of freedom



Euclidean symmetry equivariant methods have Euclidean symmetry “built-in”.
These methods understand that a physical system described by e.g. two different
coordinate systems still “means” the same thing even without training.
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Given a molecule and a rotated copy,

predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)

Additionally, networks generalize to molecules with similar motifs.
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These networks can recognize equivalent recurring geometric patterns that
appear in different locations and orientations (from seeing only one example).

Rb Mn Cl3

Octahedral
coordination

11



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
To do this... we first needed to build a general package for prototyping and scaling E(3)NNs.

e3nn Welcome to e3nn!
e3nn: a modular PyTorch framework for This is the website for the e3nn repository
Euclidean neural networks https://github.com/e3nn/e3nn/

Documentation
View My GitHub Profile
E(3) is the Euclidean group in dimension 3. That is the group of rotations,

Welcome! translations and mirror. e3nn is a pytorch library that aims to create E(3)
Getting Started equivariant neural networks.
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Contributing ’ * *
Resources ‘ .
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e3nn_tutorial -iax!
e3nn_book e’ o x * * * e3nn-jax!
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Properties... >
e Forces ‘/ \ A
e Energy A X

Electronic Structure... ’

1 X 3 e Charge Density s
e Hamiltonian NAg
e DOS

Encoder / decoder _ ] _
partial generation. Coarse-grain Fine-grain
For example... Coords. Coords

>



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dynamics.
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Ab initio molecular dynamics
e Predict forces on atoms with quantum

mechanical accuracy
e move atoms small distance in direction of force

e wash, rinse, repeat
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Ab initio molecular dynamics
e Predict forces on atoms with quantum

mechanical accuracy
e move atoms small distance in direction of force

e wash, rinse, repeat

Problem! Methods scale poorly with

number of electrons =

e Density functional theory (DFT) = O(n%)

e Coupled cluster singles doubles triples
CCSD(T) = O(n®)

e Note, this is for EACH step



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dvhamics.
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Ab initio molecular dynamics
e Predict forces on atoms with quantum

mechanical accuracy
e move atoms small distance in direction of force

e wash, rinse, repeat

Problem! Methods scale poorly with We want to use
P ML to do ab initio
number of electrons &= MD on this o
e Density functional theory (DFT) = O(n?) on this
e Coupled cluster singles doubles triples
CCSD(T) » O(nd)
e Note, this is for EACH step

100 million
atoms



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.

E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dvhamics.

@

Ab initio molecular dynamics

e Predict forces on atoms with quantum
mechanical accuracy

e move atoms small distance in direction of force

e wash, rinse, repeat

Problem! Methods scale poorly with

number of electrons &=

e Density functional theory (DFT) = O(n%)

e Coupled cluster singles doubles triples
CCSD(T) » O(n®)

e Note, this is for EACH step

We want to use
ML to do ab initio
MD on this »

100 million
atoms

Because with DFT it takes longer
than the age of the universe to

rrrrrr



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dvhamics.

Dec. 2020 - DeePMD

Gordon Bell Prize (the Nobel Prize of Supercomputing)
goes to DeePMD for machine learned MD on

100 million atoms with ab initio accuracy (27,000 GPUs).

With collaborators, Kozinsky Group @ Harvard

Jan. 2021 - NequIP (Batzner et al.) Cu
E(3)NN methods 71000x more data efficient 50 nm
(more accurate with less data).

Apr. 2022 - Allegro (Musaelian et al.)
E(3)NN methods are more accurate than and as

scalable as DeePMD on 100 million atom systems.
(~100 GPUs).

Open source codes
Allegro: https://github.com/mir-group/allegro Boris Kozinsky
NequlP: https:/qithub.com/mir-group/nequip Simon Batzner
ednn: https://github.com/e3nn/e3nn/ Alby Musaelian



https://github.com/mir-group/allegro
https://github.com/mir-group/nequip
https://github.com/e3nn/e3nn/

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and estimate the “nearsightedness” of water.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and estimate the “nearsightedness” of water.

(@) Ground state charge density of water
molecule

(b) “Surface” of water molecule
(c) Electrostatic potential red -/ blue +
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https://neurotext.library.stonybrook.edu/C1/C1_2/C1_2.html

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and estimate the “nearsightedness” of water.

(@) Ground state charge density of water “Surface” and charge density of water dimer
molecule

(b) “Surface” of water molecule
(c) Electrostatic potential red -/ blue +



https://water.lsbu.ac.uk/water/water_dimer.html
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and estimate the “nearsightedness” of water.

(@) Ground state charge density of water “Surface” and charge density of water dimer
molecule

(b) “Surface” of water molecule

(c) Electrostatic potential red -/ blue +

e Distributions readily expressed by link
link spherical harmonics and radial o
functions centered on atoms
e Natural to express with E(3)NNs
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and estimate the “nearsightedness” of water.

“Surfaces” of water
trimer, tetramer, pentamer...

What size of clusters does
our model need to see
before it “gets the idea”?

S
=


https://water.lsbu.ac.uk/water/water_dimer.html

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and estimate the “nearsightedness” of water.

Predict electron density (DFT and CCSD) of larger water cluster when trained on smaller water clusters.
See at what “size” of training data accuracy converges.
(arXiv:2201.03726) MLST 2023 \1

—J

O~ 5

)

1.2 -

Sandia
National _
Laboratories

0.8

0.6

Electron Density Error (%)

0.4

g'J t“& Josh

0.2

Training Cluster Size



https://arxiv.org/abs/2201.03726

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
..and generate fine-grain molecular conformations from coarse-grained molecules

Learn to coarsen and “re-fine” molecules
(arXiv:2201.12176)

p(z|X)

generative coarse-graining

Rafael Gomez-Bombarelli
Wupe Wang

Minkai Xu

Chen Cal



https://arxiv.org/abs/2201.12176

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.

...and E(3)NNs are state-of-art for OC20 and with shorter training times.

Open Catalysis 2020 Dataset (examples) Equiformer:
Equivariant graph
attention transformer

ICLR 2023
(arXiv:2206.11990)

First equivariant
transformer to be
state-of-art on multiple
B ' ' atomistic benchmarks
Predict energy, forces of given configurations and (QM9, MD17, OC20).

relaxed structures.
IMir -
Often, you can often take any technique in

ML and adapt it to be equivariant — but it Yi-Lun
can be subtle! Liao

Input 3D Graph

L9
(0] o o)

| Embedding l

...........................

Layer Norm

Equivariant
Graph Attention

Layer Norm

Feed Forward
Network
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Equivariant models are more data efficient than invariant models (even when predicting invariants).
Error reduces more quickly with equivariant than invariant models.

A : Power law
Im'a'ian, scaling exponent
B = slope
>
(log) Beq I3|nv
Error

‘K\\\\\\ Architecture

and task
dependent
offset.

>
(log) Number of training examples



This phenomena is observed across different Force fields

architectures and training tasks. S. Batzner et al.

Fig. 5: Learning curves.
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Table A.1 Power laws for neural force field scaling.

Model R? Scaling exponent 3 .

10 1l 2 U 3 1 1 1 I T | 4 1 1 1 | 5
SchNet  0.95 0.17 + 0.03 A o Sabemetisize - £
PaiNN  0.94 0.26 + 0.05
Allegro  0.97 0.23 + 0.03

Fig. A.5 Calculating neural scaling power laws for neural force fields. Test loss
versus dataset size for PaiNN, Allegro, and SchNet models with fixed capacity, 64.




Euclidean neural networks: neural networks + representation theory

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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Euclidean neural networks: neural networks + representation theory

neural networks = deep learning C machine learning C artificial intelligence

Any machine learnable predicted Neural networks must be differentiable so
learned parameters  output we can update the weights with...
model +

flr,w) =1y TMoss

w,; = Ww;

Evaluate performance using a loss / error function

loss = mean ((y — ytrue)Q)

neural networks
with emoijis?

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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Euclidean neural networks: neural networks + representation theory

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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Euclidean neural networks: neural networks + representation theory

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties

g is an element of Euclidean symmetry

All neural network operations are

cioni@. e (D (g)x,w) = D(g) f(x,w)

Rotations, translations, inversion

i.e. we can "rotate"” the inputs or the

outputs and we get the same thing.
? J J D(g) is how we "represent” g acting on x (or f(x)).

The form of D(g) depends on what it’s acting on!
(e.g. x vs. f(x))

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org %
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The input to our network is geometry and features on that geometry.

geometry = [[x0, yO, z0],[x1, y1, zl1]]

O features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org 3
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We categorize our features by how they transform under rotation and parity

geometry = [[x0, yO, z0],[x1, y1, zl1]]

C) features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org 37
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We categorize our features by how they transform under rotation and parity

geometry = [[x0, yO, z0],[x1, y1, zl1]]

O features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector

In order for the network to preserve
symmetry, we need to tell it what
symmetry there is to begin with
(e.g. scalars, vectors, ...)

38
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All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.
But they all transform predictably under rotation, translation, and inversion.

from e3nn import o3

Spherical harmonics

Ym L=0 @ Rs s orbital o3.Irrep(“0e”)
[
L=1 -, w— Rs p orbital o03.Irrep(“1l0”)
-
L=2 @ : A A Rs d orbital = o3.Irrep(“2e”)
-
.~ - . Rs f orbital o03.Irrep(“30")
L=3 PP ' 'J — - = :

n @

m=-3 m=-2 m=-1 m=0

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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We learn complex descriptions by interacting given features and functions of geometry.

>> e.g. convolutions with Euclidean symmetry



In standard image convolutions, filter depends on coordinate system.

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.




For atoms and other point set data, rather than image convolutions, we perform
continuous convolutions...

We can operate any geometric data:

voxels, meshes, splines, points, etc. For atoms...

We use points. Images of atomic systems are sparse and imprecise. = We use continuous convolutions
with atoms as convolution
centers.

|| Neighbor
atoms —_—
H H
VS.
. . Convolution
|| center
filter filter function

T~ W(7)




... and we require the convolutional filter to be symmetry-preserving.

E(3) symmetry preserving convolutional filters are based ...and in order to interact our filters with our
on learned radial functions and spherical harmonics... inputs we need geometric tensor algebra.

77= T lm'f’

Neighbor
atoms

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.
Curie’s principle (1834): in the causes that gave rise to them.”

. random random random
input

model 1 model 2 model 3

Tetrahedron

Octahedron

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

“When effects show certain asymmetry, this asymmetry must be found
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Just like the properties of physical systems,

the outputs of E(3)NNs have equal or higher symmetry than the inputs.

Task 1: Rectangle to Square

.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

Task 2: Square to Rectangle

<

N

.
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

X

7N 7\
N w7

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org ~ “°
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

X
X
\/ , . \ . e X
T & S

] i -

|1 | |
g | Network

| | | predicts

y | | degenerate

: | outcomes!
|

N g7

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org ~ #’
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Order parameters describe symmetry breaking and
distinguish between degenerate states.

mirror .
symmetry

higher-symmetry :

state \

Energy

degenerate
lower-symmetry states
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Order parameters describe symmetry breaking and
distinguish between degenerate states.

mirror |
A symmetry
higher-symmetry , order
l parameter

state \

+ D

Energy

degenerate
lower-symmetry states
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

What information does the network
need to “pick” a rectangle? ® @

learnable predicted

e * p:iameters ;utput / . \
flr,w) =y

-
|
I
|
inputs ¥
|
I
|

Update Wﬁfs using...
L L Oloss

%Z%‘”W N 7

@ @®
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

Use gradients to “find” what’s missing.

Input

X

Output

Y

— Learns anisotropic inputs. — Model can fit.

L=0

Irreps with
even parity
L22 break
degeneracy
between x and
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TAKEAWAYS

Euclidean neural networks are built
with the powerful assumption that
atomic systems exist in 3D Euclidean

TR

Lﬁc}

E(3)NNs have demonstrated accuracy
on a wide range of atomistic systems.

This makes these models data-efficient,
robust, scalable, and generalizable.

QM accurate MD
on 100s of millions
of atoms.

Building assumptions into our models can
lead to unexpected consequences.

r—N
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Calling in backup (slides)!
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Three essential ingredients for equivariant neural networks

Group Basis functions Tensor products (and decomposition back
representations (simplest functions into favored tensor basis)

on tensor vector that transform as

spaces fundamental vector

spaces)



When given primitive unit cells, conventional unit cells, and supercells of the

same crystal the network makes the predictions that mean the same thing.
(assuming periodic boundary conditions)

55



Why limit yourself to functions with (Euclidean) symmetry?
You can substantially shrink the space of functions you need to optimize over.

All learnable functions

All learnable All learnable

E(3) functions functions
constrained
by your data.

Functions you
actually wanted
to learn.



Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions

All learnable
equivariant
functions

All invariant
functions
constrained by
our data.

Functions you actually
wanted to learn.

OR

All learnable
invariant
functions.
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

000 > A
Predict ABX; L&t Target
distortion k distorted
displacements structure
Octahedral tilting
in perovskites a

Pm3m (221)
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Using the training procedure itself, we can find data that is implied by symmetry

(symmetry-breaking “order parameters”).

—

Predict
distortion
displacements

Octahedral tilting
in perovskites a

Pm3m (221)

6 different vectors
in reciprocal space
(+%, +%, 0)
(+1/2, -V, 0)
(0, +%, +%)
( 0, +1/2, -1/2)
(+1/2, 0, +1/2)
(+1/2, 0, -1/2)

Target
distorted
structure

Imma (74)

Using gradients we
can recover the
0.p. that matches
the data.

—
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We can additionally put constraints on the “learned” order parameters to recover
structures of intermediate symmetry.

input target output recovered output (with o.p. constraint)

e.g. constrain

pseudovector order
parameters to have
zero z-component

Pm3m (221)  Pnma (62)  Imma (74)
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We can additionally put constraints on the “learned” order parameters to recover
structures of intermediate symmetry.

input target output recovered output (with o.p. constraint)

e.g. constrain

pseudovector order
parameters to have
zero z-component

Pm3m (221)  Pnma (62)  Imma (74)

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org



mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/

One open question: <
Dealing with correlated outputs

Instead of order parameters, what if we just

make our outputs more useful, e.g. / \
sampleable?

This requires higher order correlations.

For per atom predictions,
we trace over these correlations.

N 4
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One open question: »
Dealing with correlated outputs

Instead of order parameters, what if we just

make our outputs more useful, e.g. / \
sampleable?

This requires higher order correlations.

For per atom predictions, Y X
we trace over these correlations.

N 7
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One open question: <
Dealing with correlated outputs

Instead of order parameters, what if we just
make our outputs more useful, e.g.
sampleable?

This requires higher order correlations.

For per atom predictions,
we trace over these correlations.

Application: Generative models / design
tools for physical systems \ /
e Lay down patterns, not just single
points at a time
e Learn hierarchical representations of
physical systems
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