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To describe physical systems we use 
coordinate systems

(1) and (2) use different coordinate systems 
to describe the 
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We can transform between coordinate systems 
using the symmetries of Euclidean space 
(3D rotations, translations, and inversion)
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Machine learning models not built to handle symmetry require data augmentation. 
For 3D data, this is expensive, requiring ~500 fold augmentation.

training without rotational symmetry

training with symmetry
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(1)

(2)

To describe physical systems we use 
coordinate systems

(1) and (2) use different coordinate systems 
to describe the 
same physical system.

We can transform between coordinate systems 
using the symmetries of Euclidean space 
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!

We want methods that see
(1) and (2) as the same system 
described differently...

...so want machine learning
with symmetry!
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Invariant models pre-compute invariant features and throw away the coordinate system.
Equivariant models keep the coordinate system 
AND if the coordinate system changes, the outputs change accordingly.

θ

r



Interactions in equivariant models are more complex than invariant models.
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How do we interact invariant objects? Scalar multiplication.

= =
dot product
trace
invariant
L=0
1 degree of 
freedom

cross-product
antisymmetric
equivariant
L=1
3 degrees of 
freedom

symmetric
traceless
equivariant
L=2
5 degrees 
of freedom

Generalizes to higher orders. 
Same mathematics that describes 
atomic interactions, e.g. addition of 
angular momentum.

× =

How do we interact equivariant objects? Geometric tensor products!

× =



O
1s 2s 2s 2p  2p  3d

H
1s 2s 2p

H
1s 2s 2p
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Euclidean symmetry equivariant methods have Euclidean symmetry “built-in”. 
These methods understand that a physical system described by e.g. two different 
coordinate systems still “means” the same thing even without training.

An Euclidean neural network trained on one example 
of water, can predict properties in any rotation.
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Given a molecule and a rotated copy, 
predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)
Additionally, networks generalize to molecules with similar motifs.
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These networks can recognize equivalent recurring geometric patterns that 
appear in different locations and orientations (from seeing only one example).



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
To do this… we first needed to build a general package for prototyping and scaling E(3)NNs.

Mario 
Geiger

Also
e3nn-jax!



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Properties…
● Forces
● Energy
● …

Electronic Structure…
● Charge Density
● Hamiltonian
● DOS
…

Coarse-grain
Coords.

Fine-grain
Coords

Encoder / decoder
partial generation.
For example…
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ML to do ab initio 
MD on this ⇨



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dynamics.

50 nm

Cu
Ab initio molecular dynamics
● Predict forces on atoms with quantum 

mechanical accuracy
● move atoms small distance in direction of force
● wash, rinse, repeat

Problem! Methods scale poorly with 
number of electrons 😭
● Density functional theory (DFT) ⇨ O(n3) 
● Coupled cluster singles doubles triples 

CCSD(T) ⇨ O(n8) 
● Note, this is for EACH step

100 million 
atoms

We want to use 
ML to do ab initio 
MD on this ⇨

Because with DFT it takes longer 
than the age of the universe to 
compute 😭😭😭



With collaborators, Kozinsky Group @ Harvard

Jan. 2021 – NequIP (Batzner et al.)
E(3)NN methods 1000x more data efficient 
(more accurate with less data).

Apr. 2022 – Allegro (Musaelian et al.)
E(3)NN methods are more accurate than and as 
scalable as DeePMD on 100 million atom systems.
(~100 GPUs).

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dynamics.

50 nm

Cu

Open source codes
Allegro: https://github.com/mir-group/allegro
NequIP: https://github.com/mir-group/nequip
e3nn: https://github.com/e3nn/e3nn/ 

Dec. 2020 – DeePMD 
Gordon Bell Prize (the Nobel Prize of Supercomputing) 
goes to DeePMD for machine learned MD on 
100 million atoms with ab initio accuracy (27,000 GPUs).

Boris Kozinsky
Simon Batzner
Alby Musaelian

https://github.com/mir-group/allegro
https://github.com/mir-group/nequip
https://github.com/e3nn/e3nn/
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link

(a) Ground state charge density of water 
molecule
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(c) Electrostatic potential red - / blue + 

https://neurotext.library.stonybrook.edu/C1/C1_2/C1_2.html


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and estimate the “nearsightedness” of water.

link

“Surface” and charge density of water dimer(a) Ground state charge density of water 
molecule

(b) “Surface” of water molecule
(c) Electrostatic potential red - / blue + 

link

https://water.lsbu.ac.uk/water/water_dimer.html
https://neurotext.library.stonybrook.edu/C1/C1_2/C1_2.html


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and estimate the “nearsightedness” of water.

link

“Surface” and charge density of water dimer(a) Ground state charge density of water 
molecule

(b) “Surface” of water molecule
(c) Electrostatic potential red - / blue + 

link
● Distributions readily expressed by 

spherical harmonics and radial 
functions centered on atoms

● Natural to express with E(3)NNs

https://water.lsbu.ac.uk/water/water_dimer.html
https://neurotext.library.stonybrook.edu/C1/C1_2/C1_2.html


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and estimate the “nearsightedness” of water.

“Surfaces” of water
 trimer, tetramer, pentamer…

link

What size of clusters does 
our model need to see 
before it “gets the idea”?

https://water.lsbu.ac.uk/water/water_dimer.html


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and estimate the “nearsightedness” of water.

Predict electron density (DFT and CCSD) of larger water cluster when trained on smaller water clusters. 
See at what “size” of training data accuracy converges.
(arXiv:2201.03726) MLST 2023

Josh 
Rackers

Lucas
Tecot

https://arxiv.org/abs/2201.03726


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and generate fine-grain molecular conformations from coarse-grained molecules

Learn to coarsen and “re-fine” molecules
(arXiv:2201.12176)

Rafael Gomez-Bombarelli
Wujie Wang
Minkai Xu
Chen Cai
…

https://arxiv.org/abs/2201.12176


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and E(3)NNs are state-of-art for OC20 and with shorter training times.

Open Catalysis 2020 Dataset (examples)

Predict energy, forces of given configurations and 
relaxed structures.

Equiformer:
Equivariant graph 
attention transformer
ICLR 2023
(arXiv:2206.11990)

First equivariant 
transformer to be 
state-of-art on multiple 
atomistic benchmarks 
(QM9, MD17, OC20).

Yi-Lun 
Liao

Often, you can often take any technique in 
ML and adapt it to be equivariant – but it 
can be subtle!

https://arxiv.org/abs/2206.11990


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Properties…
● Forces
● Energy
● …

Electronic Structure…
● Charge Density
● Hamiltonian
● DOS
…

Coarse-grain
Coords.

Fine-grain
Coords

Encoder / decoder
partial generation.
For example…



Power law
scaling exponent

β = slope
βeq > βinv

invariant

equivariant

(log)
Error

(log) Number of training examples

Equivariant models are more data efficient than invariant models (even when predicting invariants). 
Error reduces more quickly with equivariant than invariant models.

Architecture 
and task 
dependent 
offset.



This phenomena is observed across different 
architectures and training tasks. 

L
max = 0

L
max = 1

Force fields
S. Batzner et al.

L
max = 0L

max  = 1

L
max  > 1

Predicting electron densities
J. Rackers et al.

N. Frey et al.
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Euclidean neural networks: neural networks + representation theory

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/
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neural networks = deep learning ⊂ machine learning ⊂ artificial intelligence

Any machine 
learned 
model

input learnable 
parameters

predicted 
output

Evaluate performance using a loss / error function

Neural networks must be differentiable so 
we can update the weights with...

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

neural networks 
with emojis?

Euclidean neural networks: neural networks + representation theory

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/
#
#
#
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Euclidean neural networks: neural networks + representation theory

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/
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Euclidean neural networks: neural networks + representation theory

All neural network operations are 
constructed to commute with group 
action D(g).
Rotations, translations, inversion

i.e. we can "rotate" the inputs or the 
outputs and we get the same thing.

g is an element of Euclidean symmetry

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

D(g) is how we "represent" g acting on x (or f(x)).

The form of D(g) depends on what it’s acting on! 
(e.g. x vs. f(x)) 

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/


The input to our network is geometry and (geometric tensor) features on that geometry.

36

geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
...

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/
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geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
scalar = e3nn.o3.Irrep(“0e”)  # L=0, even
vector = e3nn.o3.Irrep(“1o”)  # L=1, odd
irreps = 1 * scalar + 1 * vector + 1 * vector

The input to our network is geometry and (geometric tensor) features on that geometry.
We categorize our features by how they transform under rotation and parity
as irreducible representations of O(3).

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/
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The input to our network is geometry and (geometric tensor) features on that geometry.
We categorize our features by how they transform under rotation and parity
as irreducible representations of O(3).

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

In order for the network to preserve 
symmetry, we need to tell it what 
symmetry there is to begin with
(e.g. scalars, vectors, ...)

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/


from e3nn import o3

Rs_s_orbital = o3.Irrep(“0e”)

Rs_p_orbital = o3.Irrep(“1o”)

Rs_d_orbital = o3.Irrep(“2e”)

Rs_f_orbital = o3.Irrep(“3o”)

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.
But they all transform predictably under rotation, translation, and inversion.

(angular portion of hydrogen atomic orbitals)

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/


We learn complex descriptions by interacting given features and functions of geometry.

>> e.g. convolutions with Euclidean symmetry



convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

In standard image convolutions, filter depends on coordinate system.



For atoms and other point set data, rather than image convolutions, we perform 
continuous convolutions… 
We can operate any geometric data: 
voxels, meshes, splines, points, etc. For atoms...
We use points. Images of atomic systems are sparse and imprecise. We use continuous convolutions 

with atoms as convolution 
centers.

Neighbor  
atoms

Convolution 
center

vs.

filter filter function



=
Neighbor  
atoms

Convolution 
center

...and in order to interact our filters with our 
inputs we need geometric tensor algebra.

E(3) symmetry preserving convolutional filters are based 
on learned radial functions and spherical harmonics...

… and we require the convolutional filter to be symmetry-preserving.
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

input random 
model 1

random 
model 2

random 
model 3

Tetrahedron

Octahedron

“When effects show certain asymmetry, this asymmetry must be found 
  in the causes that gave rise to them.”Curie’s principle (1894):

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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✓ ✗

Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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Network 
predicts 
degenerate 
outcomes!

✓ ✗

Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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degenerate 
lower-symmetry states

Energy

higher-symmetry 
state

mirror 
symmetry

Order parameters describe symmetry breaking and 
distinguish between degenerate states.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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higher-symmetry 
state

degenerate 
lower-symmetry states

Energy

mirror 
symmetry

order
parameter

⇨+

Order parameters describe symmetry breaking and 
distinguish between degenerate states.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

What information does the network 
need to “pick” a rectangle?

Update weights using...
inputs

input learnable 
parameters

predicted 
output

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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→ Learns anisotropic inputs. → Model can fit.
Input

L = 0 + 2 + 4L = 0

Use gradients to “find” what’s missing.

Irreps with
even parity 
L ≥ 2  break 
degeneracy 
between x and 
y directions.

Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

Output

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/


Euclidean neural networks are built 
with the powerful assumption that 
atomic systems exist in 3D Euclidean 
space.

E(3)NNs have demonstrated accuracy 
on a wide range of atomistic systems.

TA
K

EA
W

AY
S

Tess Smidt | tsmidt@mit.edu | e3nn.org

This makes these models data-efficient, 
robust, scalable, and generalizable.

QM accurate MD 
on 100s of millions 
of atoms.

Building assumptions into our models can 
lead to unexpected consequences.

mailto:tsmidt@mit.edu
https://e3nn.org/


Calling in backup (slides)!

53



Three essential ingredients for equivariant neural networks 

Group 
representations 
on tensor vector 
spaces

Basis functions
(simplest functions 
that transform as 
fundamental vector 
spaces)

Tensor products (and decomposition back 
into favored tensor basis)
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When given primitive unit cells, conventional unit cells, and supercells of the 
same crystal the network makes the predictions that mean the same thing. 
(assuming periodic boundary conditions)
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Why limit yourself to functions with (Euclidean) symmetry? 
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable 
functions 
constrained 
by your data.

Functions you 
actually wanted 
to learn.

All learnable 
E(3) functions
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Why not limit yourself to invariant functions? 
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable 
equivariant 
functions

Functions you actually 
wanted to learn.All learnable 

invariant 
functions.

All invariant 
functions 
constrained by 
your data.

OR
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Predict 
distortion 
displacements

Target 
distorted 
structure

Octahedral tilting 
in perovskites

Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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6 different vectors
in reciprocal space
(+½,  +½,     0)
(+½,   -½,     0)
(  0,   +½,  +½)
(  0,   +½,   -½)
(+½,     0,  +½)
(+½,     0,   -½)

b+c c+a

a-b b-c c-a

a+b
a

b

c
Using gradients we 
can recover the 
o.p. that matches 
the data.

Predict 
distortion 
displacements

Target 
distorted 
structure

Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

Octahedral tilting 
in perovskites

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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We can additionally put constraints on the “learned” order parameters to recover 
structures of intermediate symmetry. 

input recovered output (with o.p. constraint)target output

e.g. constrain 
pseudovector order 
parameters to have 
zero z-component

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
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We can additionally put constraints on the “learned” order parameters to recover 
structures of intermediate symmetry. 

input recovered output (with o.p. constraint)target output

e.g. constrain 
pseudovector order 
parameters to have 
zero z-component
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One open question: 
Dealing with correlated outputs

Instead of order parameters, what if we just 
make our outputs more useful, e.g. 
sampleable?

This requires higher order correlations.

For per atom predictions, 
we trace over these correlations.
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Dealing with correlated outputs

Instead of order parameters, what if we just 
make our outputs more useful, e.g. 
sampleable?

This requires higher order correlations.

For per atom predictions, 
we trace over these correlations.

Application: Generative models / design 
tools for physical systems
● Lay down patterns, not just single 

points at a time
● Learn hierarchical representations of 

physical systems
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