Generalization and Optimization in Symmetry-Preserving ML: Sample Complexity and Implicit Bias

Wei Zhu

University of Massachusetts Amherst

Boston Symmetry Day MIT

November 3, 2023

Joint work with many people, but mostly Ziyu Chen (UMass Amherst)

Symmetry is everywhere

- Exact quantification of the improvement
 - Sample complexity and error bound.

- Exact quantification of the improvement
 - Sample complexity and error bound.

Does it converge? To what solution?

• Training dynamics of equivariant models

- Exact quantification of the improvement
 - Sample complexity and error bound.

Does it converge? To what solution?

• Training dynamics of equivariant models

Symmetry-preserving GANs and their improved sample complexity

- J. Birrell, M.A. Katsoulakis, L. Rey-Bellet, W. Zhu. "Structure-preserving GANs". ICML (2022)
- Z. Chen, M.A. Katsoulakis, L. Rey-Bellet, W. Zhu. "Sample complexity of probability divergences under group symmetry". ICML (2023)

StyleGAN2, Karras et al., CVPR 2020

StyleGAN3, Karras et al., NeurIPS 2021

This small bird has This bird has a a yellow crown and a white belly.

blue crown with white throat and brown secondaries.

People at the park flying kites and walking.

The bathroom with the white tile has been cleaned.

DM-GAN, Zhu et al., CVPR 2019

Figure: Repecka et al., Nature Machine Intelligence 2021

Figure: Repecka et al., Nature Machine Intelligence 2021

GANs use a pair of networks to learn (to sample from) an <u>unknown</u> probability distribution.

- **Zero-sum game** between discriminator and generator—"the players".

GANs use a pair of networks to learn (to sample from) an <u>unknown</u> probability distribution.

Figure: Repecka et al., Nature Machine Intelligence 2021

- GANs use a pair of networks to learn (to sample from) an <u>unknown</u> probability distribution.
- Zero-sum game between discriminator and generator—"the players".
- Game ends when the players reach *consensus*: "fake data" looks like the "real" data.

Figure: Repecka et al., Nature Machine Intelligence 2021

 $X \ni x \sim Q$ —

Real sample

Random noise

 $Z \ni z \sim P_Z \longrightarrow \begin{array}{c} g: Z \to X \\ generator \end{array} \longrightarrow X \ni g(z) \sim P_g \longrightarrow \end{array}$

 $X \ni x \sim Q$

Real sample

Random noise

 $Z \ni z \sim P_Z \longrightarrow \begin{array}{c} g: Z \to X \\ generator \end{array} \longrightarrow X \ni g(z) \sim P_g \longrightarrow \end{array}$

 $X \ni x \sim Q$

Real sample

Random noise

 $Z \ni z \sim P_Z \longrightarrow \begin{array}{c} g: Z \to X \\ generator \end{array} \longrightarrow X \ni g(z) \sim P_g \longrightarrow \end{array}$

• Mathematically, GAN is minimizing some <u>divergence</u>, $D_H^{\Gamma}(Q||P_g)$, between Q and P_g .

• $D_H^{\Gamma}(Q \| P_g) = \max_{\gamma \in \Gamma} H(\gamma; Q, P_g)$ is determined by H and discriminators $\gamma \in \Gamma$.

- $\min_{g \in G} D_H^{\Gamma}(Q \| P_g) = \min_{g \in G} \max_{\gamma \in \Gamma} H(\gamma; Q, P_g).$

GAN is "probability divergence" minimization

- The original GAN [Goodfellow et al., 2014]: Jensen–Shannon divergence (JSD).
- f-divergences: $D_f(Q || P) = \sup \{\mathbb{E}_Q[\gamma] \mathbb{E}_P[f^*(\gamma)]\}$. (KL, JSD, etc.) $\gamma \in \mathcal{M}_{h}(X)$
- Γ -IPM: $W^{\Gamma}(Q||P) = \sup \{\mathbb{E}_{Q}[\gamma] \mathbb{E}_{P}[\gamma]\}$. (TV, Dudley metric, Wasserstein-1, MMD) $\gamma \in \Gamma$
- Wasserstein metric and Sinkhorn divergence.

 $\min_{g \in G} D_H^{\Gamma}(Q \| P_g) = \min_{g \in G} \max_{\gamma \in \Gamma} H(\gamma; Q, P_g).$

Structured target data & distribution *Q*

LYSTO¹ **ANHIR**² 1. Ciompi et al., Zenodo 2019 2. Borovec et al., IEEE Transactions on Medical Imaging 2020

Structured target data & distribution *Q*

Q

Structured target data & distribution Q

equiprobable

Question: how to build **embedded structure** into GAN players (generators and discriminators) for data-efficient distribution learning?

 $X \ni x \sim Q$ —

Real sample

$$Z \ni z \sim P_Z \longrightarrow \begin{cases} g: Z \to X \\ generator \end{cases} \longrightarrow X \ni g(z)$$
Random noise

 $\min_{g \in G} D^{\Gamma}(Q \| P_g) = \min_{g \in G} \max_{\gamma \in \Gamma} H(\gamma; Q, P_g), \quad \underline{Q} \text{ is } \Sigma \text{-invariant}$

 $\min_{g \in G} D^{\Gamma}(Q \| P_g) = \min_{g \in G} \max_{\gamma \in \Gamma} H(\gamma; Q, P_g), \quad \underline{Q} \text{ is } \Sigma \text{-invariant}$

• Target distribution Q is invariant under a group Σ .

$$\min_{g \in G} D^{\Gamma}(Q \| P_g) = \min_{g \in G} \max_{g \in G} \sum_{g \in G} p_{e}$$

- Target distribution Q is invariant under a group Σ .
- Σ : rotation, reflection, permutation, etc.

ax $H(\gamma; Q, P_g)$, \underline{Q} is Σ -invariant

$$X \ni x \sim Q$$

Real sample

$$Z \ni z \sim P_Z \longrightarrow \begin{cases} g: Z \to X \\ generator \end{cases} \longrightarrow X \ni g(z)$$

Random noise

$$\min_{g \in G} D^{\Gamma}(Q \| P_g) = \min_{g \in G} \max_{g \in G} \sum_{g \in G} p_g$$

- Target distribution Q is invariant under a group Σ .
- Σ : rotation, reflection, permutation, etc.
- How to incorporate structure into g and γ ?

ax $H(\gamma; Q, P_g)$, \underline{Q} is Σ -invariant

 $X \ni x \sim Q$ — Real sample

$$Z \ni z \sim P_Z \longrightarrow$$

Random noise

Theorem [Birrell, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2022]

Under mild assumptions on Σ and Γ , if the distributions P, Q are Σ -invariant, then $D^{\Gamma}(Q||P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q|$

• $\Gamma_{\Sigma}^{\text{INV}} \subset \Gamma$ is the subset of Σ -invariant "smarter" discriminators

$$||P\rangle = \sup_{\gamma \in \Gamma_{\Sigma}^{inv}} H(\gamma; Q, P),$$

 $X \ni x \sim Q$ — Real sample

$$Z \ni z \sim P_Z \longrightarrow$$

Random noise

Theorem [Birrell, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2022]

Under mild assumptions on Σ and Γ , if the distributions P, Q are Σ -invariant, then

- $D^{\Gamma}(O||P) = D^{\Gamma_{\Sigma}^{inv}}(O|$
- $\Gamma_{\Sigma}^{\text{INV}} \subset \Gamma$ is the subset of Σ -invariant "smarter" discriminators
- $\Gamma_{\Sigma}^{\text{INV}}$ serves as an unbiased regularization to prevent discriminator overfitting.

$$||P\rangle = \sup_{\gamma \in \Gamma_{\Sigma}^{inv}} H(\gamma; Q, P),$$

Theorem 2: "smarter" generator

Theorem [Birrell, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2022]

If P_Z is Σ -invariant and $g: Z \to X$ is Σ -equivariant, the generated measure P_g is Σ -invariant.

Theorem [Birrell, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2022]

Structure information embedded in the "smarter" generator and noise source.

If P_Z is Σ -invariant and $g: Z \to X$ is Σ -equivariant, the generated measure P_g is Σ -invariant.

Two "smart" players

Two "smart" players

Two "smart" players

Two "smart" players

RotMNIST with 1% training samples

<u>~ / \ / ~ - /</u> てえるアスアペンマベ 2 W 3 3 W E M 4 6 0 h x & J > h 4 & 4 V 4 90550000000 $\mathbf{a} \in \mathbf{c} \otimes \mathbf{a} \wedge \mathbf{1} \quad \mathbf{g} \sim \mathbf{g}$ ムヘーシンノーシーンン ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

RotMNIST with 1% training samples

"Smart" players

Medical images (ANHIR)

Real Samples

 $X \ni x \sim Q$ —

P, Q are Σ -invariant =

• Reducing Γ to Γ_{Σ}^{inv} provides a better **empirical estimation** for $D^{\Gamma}(Q||P)$.

$$\Rightarrow D^{\Gamma}(Q||P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q||P),$$

P, Q are Σ -invariant =

• Reducing Γ to Γ_{Σ}^{inv} provides a better **empirical estimation** for $D^{\Gamma}(Q||P)$.

 $(x_1, \dots, x_m) \sim P, (y_1, \dots, y_n) \sim Q \Longrightarrow Em$

$$\Rightarrow D^{\Gamma}(Q||P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q||P),$$

pirical measures
$$P_m = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}, Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$$

P, Q are Σ -invariant =

• Reducing Γ to Γ_{Σ}^{inv} provides a better **empirical estimation** for $D^{\Gamma}(Q||P)$.

$$(x_1, \dots, x_m) \sim P, (y_1, \dots, y_n) \sim Q \Longrightarrow \text{Empirical measures } P_m = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}, Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$$

• $D^{\Gamma}(Q||P) \approx D^{\Gamma}(Q_n||P_m) = D^{\Gamma_{\Sigma}}(Q_n||P_m)$

$$\Rightarrow D^{\Gamma}(Q||P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q||P),$$

P, Q are Σ -invariant =

• Reducing Γ to Γ_{Σ}^{inv} provides a better **empirical estimation** for $D^{\Gamma}(Q||P)$.

•
$$(x_1, \dots, x_m) \sim P, (y_1, \dots, y_n) \sim Q \Longrightarrow$$
 Empirical measures $P_m = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}, Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$

 $D^{\mathsf{I}}(Q||P) \approx D^{\mathsf{I}}(Q_n||P_m) = D^{\mathsf{I}}\Sigma \quad (Q_n||P_m)$

$$\Rightarrow D^{\Gamma}(Q||P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q||P),$$

Question: How much more accurate is the new estimation?

Wasserstein-1 metric

- $W(Q, P) = \sup\{\mathbb{E}_Q[\gamma] \mathbb{E}_P[\gamma]\}$. $\Gamma = \operatorname{Lip}_1(X)$ $\gamma \in \Gamma$
- Estimator: $W^{\Sigma}(Q_n, P_m) = \sup_{\gamma \in \Gamma_{\Sigma}^{\text{inv}}} \{ \mathbb{E}_{Q_n}[\gamma] \mathbb{E}_{P_m}[\gamma] \}$

Wasserstein-1 metric

- $W(Q, P) = \sup\{\mathbb{E}_Q[\gamma] \mathbb{E}_P[\gamma]\}$. $\Gamma = \operatorname{Lip}_1(X)$ $\gamma \in \Gamma$
 - Estimator: $W^{\Sigma}(Q_n, P_m) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_n}[\gamma] \mathbb{E}_{P_m}[\gamma]\}$

Theorem [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023] $X = \Sigma \times X_0$ bounded in \mathbb{R}^d , and $P, Q \in \mathscr{P}_{\Sigma}(X)$ are Σ -invariant. With high probability, when $d \ge 2$: $\forall s > 0$, $W(Q, P) - W^{\Sigma}(Q_n, P)$ when d = 1: $|W(Q, P) - W^{\Sigma}(Q_n, P_m)| \le$

$$\left| P_{m} \right| \leq C \left(\left(\frac{1}{|\Sigma|m} \right)^{\frac{1}{d+s}} + \left(\frac{1}{|\Sigma|n} \right)^{\frac{1}{d+s}} \right)$$
$$C \cdot \operatorname{diam}(X_{0}) \left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right)$$

- $MMD(Q, P) = \sup\{\mathbb{E}_Q[\gamma] \mathbb{E}_P[\gamma]\}$. Γ is the unit ball in some **RKHS** \mathscr{H} with kernel k(x, y). γ∈Γ Estimator: $MMD^{\Sigma}(Q_n, P_m) = \sup_{\gamma \in \Gamma_{\Sigma}} \{ \mathbb{E}_{Q_n}[\gamma] - \mathbb{E}_{P_m}[\gamma] \}$

 $\mathsf{MMD}(Q, P) = \sup \{ \mathbb{E}_Q[\gamma] - \mathbb{E}_P[\gamma] \}. \Gamma \text{ is the unit ball in some } \mathsf{RKHS} \ \mathscr{H} \text{ with kernel } k(x, y).$

Estimator: $MMD^{\Sigma}(Q_n, P_m) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_n}[\gamma] - \mathbb{E}_{P_m}[\gamma]\}$

Theorem [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023]

 $X = \Sigma \times X_0$ bounded in \mathbb{R}^d , and $P, Q \in \mathscr{P}_{\Sigma}(X)$ are Σ -invariant. With high probability,

 $| MMD(Q, P) - MMD^{\Sigma}(Q_n, P) |$

where
$$C_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$$
, and $a_{\Sigma,k} \in$

$$P_m$$
) $= O\left(C_{\Sigma,k}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right)\right),$

(0,1) depends on Σ and the kernel k(x, y).

$$\mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \Big| = O\left(C_{\Sigma, k}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right)\right), \quad C_{\Sigma, k} = \sqrt{a_{\Sigma, k}} + \frac{1 - a_{\Sigma, k}}{|\Sigma|}$$

 $\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O \left| C_{\Sigma, N} \right|$

$$_{,k}\left(\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{n}}\right)\right), \quad C_{\Sigma,k}=\sqrt{a_{\Sigma,k}}+\frac{1-a_{\Sigma,k}}{|\Sigma|}$$

 $\left| \mathsf{MMD}(\underline{Q}, P) - \mathsf{MMD}^{\Sigma}(\underline{Q}_n, P_m) \right| = O \left[C_{\Sigma, N} \right]$

$$_{k}\left(\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{n}}\right)\right), \quad C_{\Sigma,k}=\sqrt{a_{\Sigma,k}}+\frac{1-a_{\Sigma,k}}{|\Sigma|}$$

 $\mathsf{MMD}(\underline{Q}, P) - \mathsf{MMD}^{\Sigma}(\underline{Q}_n, P_m) = O \quad C_{\Sigma, M}$

$$_{k}\left(\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{n}}\right)\right), \quad C_{\Sigma,k}=\sqrt{a_{\Sigma,k}}+\frac{1-a_{\Sigma,k}}{|\Sigma|}$$

Missing pieces

- Exact quantification of the improvement
 - Sample complexity and error bound.

Does it converge? To what solution?

• Training dynamics of equivariant models

Implicit bias of linear equivariant networks

- Z. Chen and W. Zhu. "On the implicit bias of linear equivariant steerable networks". NeurIPS (2023)
- Inspired by [Lawrence et al., ICML 2022]

Optimization (training) of G-CNN

Optimization (training) of G-CNN

Training a DNN on the a (labeled) data set $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$:

 $\min_{\mathbf{W}} \mathscr{L}(\mathbf{W}; S) = \frac{1}{n} \sum_{i=1}^{n} \mathscr{L}(f(\mathbf{x}_i; \mathbf{W}), y_i)$

Optimization (training) of G-CNN $f(\cdot;\mathbf{W})$

Training a DNN on the a (labeled) data set

 $\min \mathscr{L}(\mathbf{W}; S) =$ W

Design $f(\cdot; \mathbf{W})$ to respect group symmetry — explicit regularization.

$$S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$
:

$$= \frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \mathbf{W}), y_i)$$

Optimization (training) of G-CNN

Training a DNN on the a (labeled) data set $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$:

- Design $f(\cdot; \mathbf{W})$ to respect group symmetry explicit regularization.
- **Question:** when trained with gradient-based methods,
 - which solution does it converge to?
 - is it really better than non-equivariant models?

• $S = \{ (\mathbf{x}_i, y_i) : i \in [n] \}, \mathbf{x}_i \in \mathbb{R}^{d_0} \text{ and } y_i \in \{\pm 1\}.$

- $S = \{ (\mathbf{x}_i, y_i) : i \in [n] \}, \mathbf{x}_i \in \mathbb{R}^{d_0} \text{ and } y_i \in \{\pm 1\}.$
- Linearly separable: $\exists \beta^* \in \mathbb{R}^{d_0}$, s.t $y_i \langle \mathbf{x}_i, \beta^* \rangle \ge 1, \forall i \in [n]$.

- $S = \{(\mathbf{x}_i, y_i) : i \in [n]\}, \mathbf{x}_i \in \mathbb{R}^{d_0} \text{ and } y_i \in \{\pm 1\}.$
- Linearly separable: $\exists \beta^* \in \mathbb{R}^{d_0}$, s.t $y_i \langle \mathbf{x}_i, \beta^* \rangle \ge 1, \forall i \in [n]$.
- Use linear fully-connected (fc) network to parameterize $\langle \mathbf{x}, \boldsymbol{\beta}^* \rangle$ $f_{fC}(\mathbf{x}; \mathbf{W}) = \mathbf{w}_{L}^{\mathsf{T}} \mathbf{w}_{L-1}^{\mathsf{T}} \cdots \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x} = \langle \mathbf{x}, \mathscr{P}_{fC}(\mathbf{W}) \rangle$ $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_L], \quad \mathscr{P}_{f_C}(\mathbf{W}) = \mathbf{w}_1 \mathbf{w}_2 \cdots \mathbf{w}_L$

$$\mathbf{N}) \rangle \stackrel{?}{\approx} \langle \mathbf{x}, \boldsymbol{\beta}^* \rangle$$

- $S = \{(\mathbf{x}_i, y_i) : i \in [n]\}, \mathbf{x}_i \in \mathbb{R}^{d_0} \text{ and } y_i \in \{\pm 1\}.$
- Linearly separable: $\exists \beta^* \in \mathbb{R}^{d_0}$, s.t $y_i \langle \mathbf{x}_i, \beta^* \rangle \ge 1, \forall i \in [n]$.
- Use linear fully-connected (fc) network to parameterize $\langle \mathbf{x}, \boldsymbol{\beta}^* \rangle$ $f_{fC}(\mathbf{x}; \mathbf{W}) = \mathbf{w}_{L}^{\mathsf{T}} \mathbf{w}_{L-1}^{\mathsf{T}} \cdots \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x} = \langle \mathbf{x}, \mathscr{P}_{fC}(\mathbf{W}) \rangle \stackrel{?}{\approx} \langle \mathbf{x}, \boldsymbol{\beta}^{*} \rangle$ $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_L], \quad \mathscr{P}_{f_C}(\mathbf{W}) = \mathbf{w}_1 \mathbf{w}_2 \cdots \mathbf{w}_L$
- Regression based on $\ell_{exp}(\hat{y}, y) = exp(-\hat{y}y)$

$$\min_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S) = \sum_{i=1}^{n} \mathscr{L}_{exp}\left(\left\langle \mathbf{x}_{i}, \mathscr{P}_{fc}(\mathbf{W})\right\rangle, y_{i}\right)$$

$$\min_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S) = \sum_{i=1}^{n} \mathscr{L}_{exp}\left(\left\langle \mathbf{x}_{i}, \mathscr{P}_{i}\right\rangle\right)$$

Trained under gradient flow (GF):

$$\frac{d\mathbf{W}}{dt} = -\nabla_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S)$$

β

$$\min_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S) = \sum_{i=1}^{n} \mathscr{L}_{exp}\left(\left\langle \mathbf{x}_{i}, \mathscr{P}_{i}\right\rangle\right)$$

Trained under gradient flow (GF):

$$\frac{d\mathbf{W}}{dt} = -\nabla_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S)$$
Question: to what does $\beta_{fc}(t) = \mathscr{P}_{fc}(\mathbf{W}(t))$ co

 ${}^{\mathsf{o}}_{\mathsf{fc}}(\mathbf{W})\rangle, y_i\rangle$

onverge?

$$\min_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S) = \sum_{i=1}^{n} \mathscr{L}_{exp}\left(\left\langle \mathbf{x}_{i}, \mathscr{P}_{i}\right\rangle\right)$$

• Trained under gradient flow (GF):

$$\frac{d\mathbf{W}}{dt} = -\nabla_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S)$$

Question: to what does $\beta_{fc}(t) = \mathscr{P}_{fc}(W(t))$ converge?

Fact [Ji and Telgarsky, ICLR 2018], [Yun et al., ICLR 2021]

•
$$\beta_{fc}^{\infty} = \lim_{t \to \infty} \beta_{fc}(t) / \|\beta_{fc}(t)\|$$
 exists.

 ${}^{\mathfrak{o}}_{\mathsf{fc}}(\mathbf{W})\rangle, y_i\rangle$

$$\min_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S) = \sum_{i=1}^{n} \mathscr{L}_{exp}\left(\left\langle \mathbf{x}_{i}, \mathscr{P}_{i}\right\rangle\right)$$

• Trained under gradient flow (GF):

$$\frac{d\mathbf{W}}{dt} = -\nabla_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{fc}}(\mathbf{W}; S)$$

Question: to what does $\beta_{fc}(t) = \mathscr{P}_{fc}(W(t))$ converge?

Fact [Ji and Telgarsky, ICLR 2018], [Yun et al., ICLR 2021]

•
$$\beta_{fc}^{\infty} = \lim_{t \to \infty} \beta_{fc}(t) / \|\beta_{fc}(t)\|$$
 exists.

• $\beta_{f_{c}}^{\infty}$ is the the max- L^2 -margin support vector machine (SVM).

Group-invariant binary classification

• Assume $S \sim \mathcal{D}$, and \mathcal{D} is **invariant** to a linear *G*-action.

- Assume $S \sim \mathcal{D}$, and \mathcal{D} is invariant to a linear G-action.
- Parameterize the invariant linear predictor β using a G-CNN,

 $f_{\text{inv}}(\mathbf{x}; \mathbf{W}) = \langle \mathbf{x}, \mathscr{P}_{\text{inv}}(\mathbf{W}) \rangle$

- Assume $S \sim \mathcal{D}$, and \mathcal{D} is <u>invariant</u> to a linear *G*-action.
- Parameterize the invariant linear predictor β using a G-CNN,

$$f_{\mathsf{inv}}(\mathbf{x};\mathbf{W}) = \langle \mathbf{x}, \mathscr{P}_{\mathsf{inv}}(\mathbf{W}) \rangle$$

• Regression:
$$\min_{\mathbf{W}} \mathscr{L}_{\mathcal{P}_{inv}}(\mathbf{W}; S) = \sum_{i=1}^{n} \mathscr{L}_{exp} \Big($$

• Gradient flow: $\frac{d\mathbf{W}}{dt} = -\nabla_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{inv}}(\mathbf{W}; S)$

 $\langle \mathbf{x}_i, \mathscr{P}_{\mathsf{inv}}(\mathbf{W}) \rangle, y_i \rangle$

- Assume $S \sim \mathcal{D}$, and \mathcal{D} is <u>invariant</u> to a linear *G*-action.
- Parameterize the invariant linear predictor β using a G-CNN,

$$f_{\mathsf{inv}}(\mathbf{x};\mathbf{W}) = \langle \mathbf{x}, \mathscr{P}_{\mathsf{inv}}(\mathbf{W}) \rangle$$

• Regression:
$$\min_{\mathbf{W}} \mathscr{L}_{\mathcal{P}_{inv}}(\mathbf{W}; S) = \sum_{i=1}^{n} \mathscr{L}_{exp} \left(\sum_{i=1}^{n} \mathscr{L}_{exp} \right)^{n}$$

• Gradient flow: $\frac{d\mathbf{W}}{dt} = -\nabla_{\mathbf{W}} \mathscr{L}_{\mathscr{P}_{inv}}(\mathbf{W};S)$

Question: to what does $\beta_{inv}(t) = \mathscr{P}_{inv}(W(t))$ converge?

 $\langle \mathbf{x}_i, \mathscr{P}_{inv}(\mathbf{W}) \rangle, y_i \rangle$

Question: to what does $\beta_{inv}(t) = \mathscr{P}_{inv}(\mathbf{W}(t))$ converge?

Theorem [Chen and **Z.**, *NeurIPS* 2023]

If the input linear G-action is unitary, then

• $\beta_{\text{inv}}^{\infty} = \lim_{t \to \infty} \beta_{\text{inv}}(t) / \|\beta_{\text{inv}}(t)\|$ exists.

Question: to what does $\beta_{inv}(t) = \mathscr{P}_{inv}(\mathbf{W}(t))$ converge?

Theorem [Chen and **Z.**, *NeurIPS* 2023]

If the input linear G-action is unitary, then

• $\beta_{\text{inv}}^{\infty} = \lim_{t \to \infty} \beta_{\text{inv}}(t) / \|\beta_{\text{inv}}(t)\|$ exists.

• β_{inv}^{∞} is the the max-margin SVM on the transformed dataset

 $\overline{S} = \{(\overline{\mathbf{x}}_i, y_i) : i \in [n]\}, \text{ where } \overline{\mathbf{x}} = \frac{1}{|G|} \sum_{a \in G} g\mathbf{x}$

Question: to what does $\beta_{inv}(t) = \mathscr{P}_{inv}(\mathbf{W}(t))$ converge?

Theorem [Chen and **Z.**, *NeurIPS* 2023]

If the input linear G-action is unitary, then

• $\beta_{\text{inv}}^{\infty} = \lim_{t \to \infty} \beta_{\text{inv}}(t) / \|\beta_{\text{inv}}(t)\|$ exists.

• β_{inv}^{∞} is the the max-margin SVM on the transformed dataset

 $\overline{S} = \{(\overline{\mathbf{x}}_i, y_i) : i \in [n]\}, \text{ where } \overline{\mathbf{x}} = \frac{1}{|G|} \sum_{a \in G} g\mathbf{x}$

• β_{inv}^{∞} is the unique max-margin invariant SVM on the original dataset $S = \{(\mathbf{x}_{i}, y_{i}) : i \in [n]\}$

y = 1y = -1

Corollary (G-CNN vs data augmentation)

- β_{inv}^{∞} : linear **G-CNN** trained on $S = \{(\mathbf{x}_i, y_i) : i \in [n]\}.$
- β_{fc}^{∞} : linear fully-connected network trained on $S_{aug} = \{(g\mathbf{x}_i, y_i) : i \in [n], g \in G\}$.

 $\beta_{\text{steer}}^{\infty} = \beta_{\text{fc}}^{\infty}$

Corollary (G-CNN vs data augmentation)

- β_{inv}^{∞} : linear **G-CNN** trained on $S = \{(\mathbf{x}_i, y_i) : i \in [n]\}.$
- β_{fc}^{∞} : linear fully-connected network trained on $S_{aug} = \{(g\mathbf{x}_i, y_i) : i \in [n], g \in G\}$.

- Equivariant neural networks is <u>equivalent</u> to data augmentation. lacksquare
- $\beta_{\text{steer}}^{\infty} = \beta_{\text{fc}}^{\infty}$

Corollary (G-CNN vs data augmentation)

- β_{inv}^{∞} : linear **G-CNN** trained on $S = \{(\mathbf{x}_i, y_i) : i \in [n]\}.$
- β_{fc}^{∞} : linear fully-connected network trained on $S_{aug} = \{(g\mathbf{x}_i, y_i) : i \in [n], g \in G\}$.

- Equivariant neural networks is equivalent to data augmentation.
- <u>Caveat</u>:
 - Full data augmentation on the <u>entire</u> group G.
 - **Unitary** input action.
 - Only linear models.

 $\beta_{\text{steer}}^{\infty} = \beta_{\text{fc}}^{\infty}$

- *G*-invariant distribution \mathscr{D} over $\mathbb{R}^{d_0} \times \{\pm 1\}$.
- \mathscr{D} can be separated by an invariant classifier β_0 .

- *G*-invariant distribution \mathscr{D} over $\mathbb{R}^{d_0} \times \{\pm 1\}$.
- \mathscr{D} can be separated by an invariant classifier β_0 .

Theorem [Chen and **Z.**, *NeurIPS* 2023]
Let
$$\overline{\mathbf{R}} = \inf \{r > 0 : ||\overline{\mathbf{x}}|| \le r\}$$
. For any $\delta > 0$, w
 $\mathbb{P}_{(\mathbf{x},y)\sim \mathscr{D}} \left[y \neq \operatorname{sign} \left(\left\langle \mathbf{x}, \boldsymbol{\beta}_{\operatorname{inv}}^{\infty} \right\rangle \right) \right] \le \frac{2\overline{\mathbf{R}} ||\boldsymbol{\beta}_{0}||}{\sqrt{n}}$

- *G*-invariant distribution \mathscr{D} over $\mathbb{R}^{d_0} \times \{\pm 1\}$.
- \mathscr{D} can be separated by an invariant classifier β_0 .

Theorem [Chen and **Z.**, *NeurIPS* 2023]
Let
$$\overline{\mathbf{R}} = \inf \{r > 0 : ||\overline{\mathbf{x}}|| \le r\}$$
. For any $\delta > 0$, w.
 $\mathbb{P}_{(\mathbf{x},y)\sim \mathscr{D}} \left[y \neq \operatorname{sign} \left(\left\langle \mathbf{x}, \beta_{\operatorname{inv}}^{\infty} \right\rangle \right) \right] \le \frac{2\overline{\mathbf{R}} ||\beta_0||}{\sqrt{n}}$

Remark: In comparison, for fully-connected networks, we have

$$\mathbb{P}_{(\mathbf{x},y)\sim\mathcal{D}}\left[y\neq \operatorname{sign}\left(\left\langle \mathbf{x},\boldsymbol{\beta}_{\mathsf{fC}}^{\infty}\right\rangle\right)\right] \leq \frac{2R\|\boldsymbol{\beta}_{0}\|}{\sqrt{n}} + \frac{1}{\sqrt{n}}$$

where $\mathbf{R} = \inf \{r > 0 : \|\mathbf{x}\| \le r \text{ with probability 1} \} \ge \overline{\mathbf{R}}$

Conclusion

- Exact quantification of the improvement
 - Sample complexity and error bound.

Does it converge? To what solution?

• Training dynamics of equivariant models

Related papers

- J. Birrell, M.A. Katsoulakis, L. Rey-Bellet, W. Zhu. "Structure-preserving GANs". ICML (2022)
- Z. Chen, M.A. Katsoulakis, L. Rey-Bellet, W. Zhu. "Sample complexity of probability divergences under group symmetry". ICML (2023)
- Z. Chen and W. Zhu. "On the implicit bias of linear equivariant steerable networks: margin, generalization, and their equivalence to data augmentation". NeurIPS (2023)

Acknowledgement

NSF DMS-2052525, DMS-2140982, and DMS-2244976.

Symmetrization operators S_{Σ} and S^{Σ}

Symmetrization operators S_{Σ} and S^{Σ}

Symmetrization of functions: $S_{\Sigma} : \mathscr{M}_{b}(X) \to \mathscr{M}_{b}(X)$,

$$S_{\Sigma}[\gamma](x) = \int_{\Sigma} \gamma(T_{\sigma'}(x)) \mu_{\Sigma}(d\sigma') = E_{\mu_{\Sigma}}[\gamma \circ T_{\sigma'}(x)].$$

Symmetrization operators S_{Σ} and S^{Σ}

Symmetrization of functions: $S_{\Sigma} : \mathscr{M}_{h}(X) \to \mathscr{M}_{h}(X)$,

$$S_{\Sigma}[\gamma](x) = \int_{\Sigma} \gamma(T_{\sigma'}(x)) \mu_{\Sigma}(d\sigma') = E_{\mu_{\Sigma}}[\gamma \circ T_{\sigma'}(x)].$$

Symmetrization of measures: $S^{\Sigma} : \mathscr{P}(X) \to \mathscr{P}(X)$, ullet

$$E_{S^{\Sigma}[P]} \gamma = \int_{X} S_{\Sigma}[\gamma](x) dP(x) = E_{P} S_{\Sigma}[\gamma], \ \forall \gamma \in \mathcal{M}_{b}(X)$$

Mode collapse – a warning

Theorem [Birrell, Katsoulakis, Rey-Bellet, **Z.**, ICML 2022]

If $S_{\Sigma}[\Gamma] \subset \Gamma$ and $P, Q \in \mathscr{P}(X)$, i.e., not necessarily Σ -invariant, then

 $D^{\Gamma_{\Sigma}^{\mathsf{INV}}}(Q||P) = D^{\Gamma}(S^{\Sigma}[Q]||S^{\Sigma}[P]).$

Mode collapse – a warning

Theorem [Birrell, Katsoulakis, Rey-Bellet, **Z.**, ICML 2022]

If $S_{\Sigma}[\Gamma] \subset \Gamma$ and $P, Q \in \mathscr{P}(X)$, i.e., not necessarily Σ -invariant, then $D^{\Gamma_{\Sigma}^{\mathsf{INV}}}(Q||P) = D^{\Gamma}(S^{\Sigma}[Q]||S^{\Sigma}[P]).$

• Reducing Γ to Γ_{Σ}^{inv} might result in "mode collapse" if P_g is NOT Σ -invariant

Mode collapse – a warning

Theorem [Birrell, Katsoulakis, Rey-Bellet, **Z.**, ICML 2022]

- If $S_{\Sigma}[\Gamma] \subset \Gamma$ and $P, Q \in \mathcal{P}(X)$, i.e., not necessarily Σ -invariant, then $D^{\Gamma_{\Sigma}^{\mathsf{INV}}}(Q||P) = D^{\Gamma}(S^{\Sigma}[Q]||S^{\Sigma}[P]).$
- Reducing Γ to Γ_{Σ}^{inv} might result in "mode collapse" if P_g is NOT Σ -invariant
- The reason is as P_g only needs to equal Q after Σ -symmetrization.

