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Applications of equivariant neural networks to drug discovery

Figure: Gromski et al. 2019 & Wikipedia
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A typical workflow: docking + scoring

Binding 
affinity

Scoring 
function

Protein 
structure

Ligand 
structure

Docking

Today’s focus(e.g., AlphaFold, DiffDock)

1. Formulate binding affinity prediction as a generative modeling problem


2. Train the generative model using SE(3) denoising score matching (DSM)


3. Propose a simple & equivariant rotation prediction module for SE(3) DSM 

Outline of this talk
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Background: supervised & unsupervised models

Ki=18nM Ki=160nM Ki=1500nM

Supervised models

Protein-
ligand 

complex

Affinity:

Training criteria: 
regression

Unsupervised models

Protein-
ligand 

complex

Training criteria: 
maximum 
likelihood

Benefit: works when 
binding affinity data is 
limited (e.g., antibodies)

Limitation: requires lots of 
binding affinity labels
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Background: connection between binding energy and log-likelihood

• Intuition: if a protein-ligand complex has a strong 
binding affinity, it will appear more often


• The likelihood of a complex , 
where  is the energy of a complex


• Previous work (e.g., DrugScore2018 [1]) showed 
log-likelihood is correlated with binding energy


• , where  is 

the distance between atom pair 


• Model is not expressive due to factorization

p(x) ∝ exp(−Eθ(x))
Eθ(x)

log p(x) = ∑i,j
log p(Dij = dij) dij

(i, j)
Molecule

Energy 
landscape

 

  

[1] Dittrich et al., “Converging a Knowledge-Based Scoring Function: DrugScore2018” J. Chem. Inf. Model. 2019, 59, 1, 509–521
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Energy-based 
Model (EBM)

Our approach: neural network energy models
Learn binding energy from crystal structures (data-driven)

Molecule

Energy 
landscape

 

  

Protein-ligand 3D 
structures



EBM architecture for protein-ligand binding
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Requirement:  is SE(3)-invariant and differentiable w.r.t.  E(X) X

…
…

Features A

[x1, y1, z1]
[x2, y2, z2]

[xm, ym, zm]

…

Coordinates X

[x1, y1, z1]
[x2, y2, z2]

[xn, yn, zn]

…

Pocket

SE(3)-invariant 
 point cloud 

encoder

GCN

One-hot

Geometric 
embedding hi

…
…

Energy 
Eθ(X)

 

sum of pairwise interaction 
within distance threshold d

Eθ(X) = ∑i,j
ϕo(hi, hj)𝕀[Dij < d]

  


Ligand



Training EBMs with denoising score matching
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Standard approach: Gaussian noise

x̃ = x + σϵ

x

x̃ = x + σϵ

x

Train the EBM so that

ϵ =
x − x̃

σ
≈ ∇xEθ(x)

Gaussian noise 
ϵ ∼ N(0,I)

• Train EBMs with denoising score matching: 


• By shaping the gradient , we can recover the true energy 
function (up to affine transformation)

∥∇xEθ(x) − ϵ∥

∇xEθ(x)



Training EBMs with denoising score matching
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For molecules, we should use rigid transformation noises

x̃ = Rx + t

x

Random rigid 
transformation

• The key step in SE(3) denoising score matching is to infer 
the rotation induced by the score∇xEθ(x)

x

x̃ = Rx + t

Protein Ligand

Train the EBM so that
R ≈ rotation caused by∇xEθ(x)



Euler’s rotation equation
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Infer rotation  from gradient  (force)R ∇xEθ(x)

Score 

∇xEθ(x)

• The torque applied to the ligand 


• (Euler’s rotation equation) Angular acceleration of the ligand , where  is the inertia matrix


• Angular velocity  for an infinitesimal time 


• Rotation matrix  is the exponential of the following matrix 

τ = ∑i
(xi − μ) × ∇xi

Eθ(x)

α = I−1τ I

ω = I−1τΔt Δt

R W(ω) =

Protein

Ligand 
atom

Gradient of the 
energy = force 

Force  torque 
 rotation

→
→

where IN 2 R3⇥3 is an inertia matrix that describes the
mass distribution of a ligand and the torque needed for a
desired angular acceleration. Importantly, the value of ⌧

and IN depends on the rotation center µ. Suppose all atoms
have unit mass and each atom receives a force fi, the torque
and inertia matrix are defined as follows

⌧ =
X

i2ligand

(xi � µ)⇥ fi (2)

IN =
X

i2ligand

kxi � µk2I � (xi � µ)(xi � µ)> (3)

In this paper, we choose µ as the center of a ligand. Notice
that when the ligand is static (! = 0), Euler’s equation has a
much simpler form IN

d!
dt

= ⌧ . We will use this simplified
form for the rest of this work.

3.2. Force Layer

To predict a rotation using Euler’s rotation equations, we
need to know the force fi of each atom. In this paper, we
model this force term as the gradient (@E/@xi)> of an en-
ergy function E(A,X). The advantage of this approach is
that we can interpret the learned energy as binding affinity,
which is very useful for virtual screening. By definition,
the energy function must be differentiable with respect to
X and SE(3)-invariant. Thus, we adopt the frame averag-
ing technique [32] so that E directly takes coordinates X

as input rather than a distance matrix. To be specific, our
energy function is parameterized as follows

H =
1

|G|
X

gk2G
�h(A, gk(X)) (4)

E(A,X) =
X

i,j

�o(hi,hj)I[Dij < d] (5)

fi =

✓
@E(A,X)

@xi

◆>
(6)

where the encoder �h is a self-attention neural network [33]
that learns atom representations H = [h1, · · · ,hn] based
on atom features A and coordinates X . In Eq.(4), the
model first projects the coordinates X onto a set of frames
{gk(X)} defined in Puny et al. [32], encode each frame to
hidden representations, and then average the frame repre-
sentations to maintain SE(3) invariance. Finally, we com-
pute the energy E(A,X) by modeling the pairwise poten-
tial �o(hi,hj) (scalar) between all atom pairs. The poten-
tial is calculated only for atoms within a distance threshold
d because atomic interaction vanishes beyond certain dis-
tance.

Remark. We choose to model fi as the gradient @E/@xi

because we want to learn a binding energy function. For
other applications like docking, fi can be the output of a

score network [8]. For example, we can predict fi using
EGNN force layers [10]:

fi =
X

j
fij , fij = �x(hi,hj)(xi � xj) (7)

where �x is a feed-forward neural network that takes the
hidden representations hi,hj and outputs the magnitude of
the force (scalar) between points i and j. The force fij

follows the direction xi � xj . We leave the application of
NERE to docking for future work.

3.3. Rotation Layer

As shown in Figure 1, NERE outputs a rotation based on
the predicted forces in the following procedure

! = CI
�1
N

⌧ = CI
�1
N

X

i2ligand

(xi � µ)⇥ fi (8)

x
new
i

= xi + c1! ⇥ xi + c2! ⇥ (! ⇥ xi) (9)

The rationale behind each equation is explained as follows.
Eq.(8) calculates the torque ⌧ based on the predicted forces
fij and the resulting angular acceleration using the simpli-
fied Euler’s equation IN

d!
dt

= ⌧ . Assuming constant accel-
eration over a short time period C, the new angular velocity
! = CI

�1
N

⌧ . We note that calculating the inverse I
�1
N

is
cheap because it is a constant 3⇥ 3 matrix.

Given the predicted angular velocity !, its corresponding
rotation matrix is defined by a matrix exponential map

R! = exp(W!), W! =

0

@
0 �!z !y

!z 0 �!x

�!y !x 0

1

A , (10)

where ! = (!x,!y,!z) and W! is an infinitesimal ro-
tation matrix. Since W! is a skew symmetric matrix, the
matrix exponential has the following closed form

R! = exp(W!) = I + c1W! + c2W
2
! (11)

c1 =
sin k!k
k!k , c2 =

1� cos k!k
k!k2 (12)

Fortunately, we do not need to explicitly compute the matrix
exponential R! since W! is the linear mapping of cross
product, i.e. ! ⇥ r = W!r. Therefore, applying the rota-
tion matrix R!xi is equivalent to Eq.(9) expressed in terms
of cross products.

3.4. Analysis of Equivariance

Intuitively, NERE should be equivariant under SO(3) rota-
tion group because it is derived from physics. We formally
state this proposition as follows (proof in the appendix).



Euler’s rotation equation
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Infer rotation  from gradient  (force)R ∇xEθ(x)

Score 

∇xEθ(x)

• The good news is that  is a skew symmetric matrix and its exponential has a closed form


• The rotation operation can be further simplified to , 
where  and 


• The above rotation formula only requires vector cross product, which is very efficient.

W(ω)

Rx = eW(ω)x = x + c1ω × x + c2ω × (ω × x)
c1 = sin ∥ω∥/∥ω∥ c2 = (1 − cos ∥ω∥)/∥ω∥2

Protein

Ligand 
atom

Gradient of the 
energy = force 

Force  torque 
 rotation

→
→



Euler’s rotation equation as a rotation layer
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A simple, yet equivariant way to predict rotations

Score 

∇xEθ(x)

Protein

Ligand 
atom

Gradient of the 
energy = force 

Force  torque 
 rotation

→
→

Force automatically 
rotates by 45º

• If we rotate a complex by , we have:


• Torque 


• Inertia matrix 


• Angular velocity 


• Rotation matrix 

Q

τQ = ∑i
(Qxi − Qμ) × Q∇xi

Eθ(x) = Qτ

IQ = QIQ−1

ωQ = I−1
Q τQΔt = Qω

RQ = QR



SE(3) denoising score matching
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Training procedure

x̃ = Rx + t

x

Random rigid 
transformation

• Step 1: Sample rotation from SO(3) Gaussian distribution 


• Sample a random direction  from unit sphere


• Sample an angle  with density  (Isotropic Gaussian)


• The score of  is 


• Step 2: Calculate the energy  and its score  (force)


• Calculate the torque 


• Infer angular velocity 


• Step 3: Compute SE(3) DSM Loss


•

𝒩SO(3)

e

θ f(θ)

𝒩SO(3) ∇θlog f(θ) ⋅ e

Eθ(x) ∇xEθ(x)

τ

ω = I−1τΔt

∥ω − ∇θlog f(θ) ⋅ e∥

Protein

Ligand



Results: protein-ligand binding
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• Training set: 5237 protein-ligand complexes in 
PDBBind refined set (without using binding 
affinity data)


• Test set: 285 complexes from CASF challenge 
evaluation set [1]. Measure the Pearson 
correlation between predicted and true affinity


• Supervised models are trained on ~18000 
binding affinity data in PDBBind


• SE(3) DSM outperforms Gaussian noise DSM 
and other unsupervised models 

Log-likelihood is strongly correlated with binding affinity

Unsupervised methods

Ours (SE(3) DSM)

MM/GBSA

Ours (Gaussian DSM)

Autodock Vina

DrugScore2018

Pearson Correlation

0 0.2 0.4 0.6 0.8 1

0.602

0.604

0.64

0.647

0.656

Supervised methods

TankBind

IGN

KDeep

0 0.2 0.4 0.6 0.8 1

0.824

0.84

0.82



Results: antibody-antigen binding
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• Training set: 3416 complexes from Structure 
Antibody Database (SAbDab).


• Test set: 566 complexes from SAbDab that have 
binding affinity labels


• We compare with several biophysical potentials 
(unsupervised), and a supervised neural network 
trained on only 100 binding affinity data points


• We outperform supervised baseline because we 
can leverage more unlabeled antibody-antigen 
complexes

Supervised models suffer from lack of binding affinity data
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Unsupervised Protein-Ligand Binding Energy Prediction via Neural Euler’s Rotation Equation

Crystal ZDOCK
ZRANK 0.318 0.163
ZRANK2 0.176 0.151
RosettaDOCK 0.064 0.025
PYDOCK 0.248 0.164
SIPPER -0.138 0.003
AP PISA 0.323 0.144
FIREDOCK 0.101 -0.052
FIREDOCK AB 0.199 0.042
CP PIE 0.234 0.120
NERE (ours) 0.340.029 0.234.040

- rotation only 0.303.026 0.194.066

- translation only 0.312.038 0.178.054

- standard DSM 0.335.038 0.207.037

Supervised NN 0.295.098 0.258.100

Table 2. Pearson correlation on SAbDab test set (both crystal and
docked structures). Standard deviation is only shown for NERE
because baseline models are deterministic.

training set does not have affinity labels). It has the same
encoder architecture as NERE. We train both NERE and this
supervised neural network (NN) with five different random
seeds and report their average performance. For supervised
NN, we randomly select half of the validation set for training
and the other half for validation.

Results (Crystal structure). Similar to protein-ligand bind-
ing, we first evaluate all models on crystal structures and
report the Pearson correlation coefficient between true and
predicted binding energy. As shown in Table 2, our model
outperforms existing physics-based potentials and super-
vised NN despite not using any binding affinity data. The
performance of supervised NN is quite unstable (large stan-
dard deviation) as the training data is limited. In this partic-
ular case, training with unlabelled data (⇡3000 complexes)
leads to more effective and stable models.

Results (Docked structure). In our second experiment,
the input complexes are predicted by a docking software
to emulate a more realistic scenario. We use a common
docking program called ZDOCK (Pierce et al., 2014) to
predict the structure of all antibody-antigen complexes in
the test set. Our model still outperforms all the baselines in
this challenging setting. Yet, all models yield a much lower
performance due to considerable docking error (test me-
dian RMSD is 19.4). Both NERE and supervised NN have
similar performance given that supervised NN has a large
standard deviation, but NERE is more sensitive to docking
error. In summary, docking accuracy is crucial to binding
energy prediction and we need to either improve docking
accuracy or the robustness of binding energy predictors.

CDR-H3 CDR-L3

Figure 4. Visualizing our learned energy function as a heat map.
Each entry represent binding energy between an epitope and anti-
body CDR residue (the darker the stronger). Our model correctly
puts more attention to CDR-H3/L3 residues.

5.3. Ablation Study and Visualization

Ablation studies. We first compare SE(3) DSM with stan-
dard DSM, which perturbs each atom with a Gaussian noise
rather than rotating the ligand as a rigid body. We find that
SE(3) DSM achieves better performance especially in the
docked setting (Table 1: 0.651/0.632; Table 2: 0.234/0.207).
A potential reason is that adding Gaussian noise deforms
the ligand shape and often creates invalid conformations. In
addition, we run NERE by keeping only the rotation or trans-
lation score matching term in our training objective `dsm.
Indeed, incorporating both terms gives the best performance
(Table 1 and 2), showing that considering both degree of
freedom is crucial to unsupervised binding prediction.

Visualizing interaction energy. Next, we investigate the
contribution of different residues to predicted binding en-
ergy. Figure 4 is a heat map of a antibody-antigen complex,
where each row and column represent an epitope residue
and an antibody CDR residue, respectively. Each entry in
the heat map is the energy between two residue (recall that
E(A,X) is a summation

P
i,j

�o(hi,hj)I[Dij < d]). An
entry is left blank if the distance Di,j > d, where d = 20Å.
Interestingly, we find that the model pays the most attention
to CDR-H3 and CDR-L3 residues. In most test cases, their
energy is much lower than other CDR residues. This agrees
with the domain knowledge that CDR-H3 and CDR-L3
residues is the major component for binding.

Visualizing energy landscape. Lastly, we study how the
learned energy changes with respect to ligand orientations.
Given an input complex, we perform a grid search of ligand
rotation angles ! = [!1,!2,!3] and plot the predicted en-
ergy for each pose. As 3D contour plot is hard to visualize,
we decompose it into three 2D contour plots by fixing one of
the three axis (!1,!2,!3) to zero. Ideally, the crystal struc-

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Unsupervised Protein-Ligand Binding Energy Prediction via Neural Euler’s Rotation Equation

Crystal ZDOCK
ZRANK 0.318 0.163
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AP PISA 0.323 0.144
FIREDOCK 0.101 -0.052
FIREDOCK AB 0.199 0.042
CP PIE 0.234 0.120
NERE (ours) 0.340.029 0.234.040

- rotation only 0.303.026 0.194.066

- translation only 0.312.038 0.178.054

- standard DSM 0.335.038 0.207.037

Supervised NN 0.295.098 0.258.100

Table 2. Pearson correlation on SAbDab test set (both crystal and
docked structures). Standard deviation is only shown for NERE
because baseline models are deterministic.

training set does not have affinity labels). It has the same
encoder architecture as NERE. We train both NERE and this
supervised neural network (NN) with five different random
seeds and report their average performance. For supervised
NN, we randomly select half of the validation set for training
and the other half for validation.

Results (Crystal structure). Similar to protein-ligand bind-
ing, we first evaluate all models on crystal structures and
report the Pearson correlation coefficient between true and
predicted binding energy. As shown in Table 2, our model
outperforms existing physics-based potentials and super-
vised NN despite not using any binding affinity data. The
performance of supervised NN is quite unstable (large stan-
dard deviation) as the training data is limited. In this partic-
ular case, training with unlabelled data (⇡3000 complexes)
leads to more effective and stable models.

Results (Docked structure). In our second experiment,
the input complexes are predicted by a docking software
to emulate a more realistic scenario. We use a common
docking program called ZDOCK (Pierce et al., 2014) to
predict the structure of all antibody-antigen complexes in
the test set. Our model still outperforms all the baselines in
this challenging setting. Yet, all models yield a much lower
performance due to considerable docking error (test me-
dian RMSD is 19.4). Both NERE and supervised NN have
similar performance given that supervised NN has a large
standard deviation, but NERE is more sensitive to docking
error. In summary, docking accuracy is crucial to binding
energy prediction and we need to either improve docking
accuracy or the robustness of binding energy predictors.

CDR-H3 CDR-L3

Figure 4. Visualizing our learned energy function as a heat map.
Each entry represent binding energy between an epitope and anti-
body CDR residue (the darker the stronger). Our model correctly
puts more attention to CDR-H3/L3 residues.

5.3. Ablation Study and Visualization

Ablation studies. We first compare SE(3) DSM with stan-
dard DSM, which perturbs each atom with a Gaussian noise
rather than rotating the ligand as a rigid body. We find that
SE(3) DSM achieves better performance especially in the
docked setting (Table 1: 0.651/0.632; Table 2: 0.234/0.207).
A potential reason is that adding Gaussian noise deforms
the ligand shape and often creates invalid conformations. In
addition, we run NERE by keeping only the rotation or trans-
lation score matching term in our training objective `dsm.
Indeed, incorporating both terms gives the best performance
(Table 1 and 2), showing that considering both degree of
freedom is crucial to unsupervised binding prediction.

Visualizing interaction energy. Next, we investigate the
contribution of different residues to predicted binding en-
ergy. Figure 4 is a heat map of a antibody-antigen complex,
where each row and column represent an epitope residue
and an antibody CDR residue, respectively. Each entry in
the heat map is the energy between two residue (recall that
E(A,X) is a summation

P
i,j

�o(hi,hj)I[Dij < d]). An
entry is left blank if the distance Di,j > d, where d = 20Å.
Interestingly, we find that the model pays the most attention
to CDR-H3 and CDR-L3 residues. In most test cases, their
energy is much lower than other CDR residues. This agrees
with the domain knowledge that CDR-H3 and CDR-L3
residues is the major component for binding.

Visualizing energy landscape. Lastly, we study how the
learned energy changes with respect to ligand orientations.
Given an input complex, we perform a grid search of ligand
rotation angles ! = [!1,!2,!3] and plot the predicted en-
ergy for each pose. As 3D contour plot is hard to visualize,
we decompose it into three 2D contour plots by fixing one of
the three axis (!1,!2,!3) to zero. Ideally, the crystal struc-



Visualization: binding energy attention
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What residues contribute the most?

CDR-H3 CDR-L3

• 


•  is the binding energy 
between two residues


• We plot  for all pairs 
within the distance threshold d


• Interestingly, the model pays the 
most attention to CDR-H3 and 
CDR-L3 residues, which are 
most critical to binding.

Eθ(x) = ∑i,j
ϕo(hi, hj)𝕀[Dij < d]

ϕo(hi, hj)

ϕo(hi, hj)



Visualization: binding energy landscape
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How binding energy changes with respect to ligand orientation?

*

* *

* *

*
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Towards unsupervised models for protein-ligand binding

1. Formulate binding affinity prediction as a generative modeling problem


• Train the generative model using SE(3) denoising score matching (DSM)


2. Propose a simple & equivariant rotation prediction module for SE(3) DSM


• Embed Euler’s rotation equation into neural networks (adding physical prior)
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