

SE(3) Denoising Score Matching with **Neural Euler's Rotation Equation** Towards unsupervised models for protein-ligand binding

Wengong Jin*, Sisi Sarkizova, Xun Chen, Nir Hacohen, Caroline Uhler *Eric and Wendy Schmidt Center, Broad Institute

Protein-ligand binding affinity prediction Applications of equivariant neural networks to drug discovery

Figure: Gromski et al. 2019 & Wikipedia

Protein-ligand binding affinity prediction A typical workflow: docking + scoring

Outline of this talk

- 1. Formulate binding affinity prediction as a generative modeling problem
- 2. Train the generative model using SE(3) denoising score matching (DSM)
- 3. Propose a simple & equivariant rotation prediction module for SE(3) DSM

Protein-ligand binding affinity prediction **Background: supervised & unsupervised models**

Supervised models

Protein-ligand binding affinity prediction Background: connection between binding energy and log-likelihood

- **Intuition:** if a protein-ligand complex has a strong binding affinity, it will appear more often
- The likelihood of a complex $p(x) \propto \exp(-E_{\theta}(x))$, where $E_{\theta}(x)$ is the energy of a complex
- Previous work (e.g., DrugScore2018 [1]) showed log-likelihood is correlated with binding energy

•
$$\log p(x) = \sum_{i,j} \log p(D_{ij} = d_{ij})$$
, wh

the distance between atom pair (i, j)

Model is not expressive due to factorization

Our approach: neural network energy models Learn binding energy from crystal structures (data-driven)

Protein-ligand 3D structures

EBM architecture for protein-ligand binding Requirement: E(X) is SE(3)-invariant and differentiable w.r.t. X

Standard approach: Gaussian noise

 $\mathcal{P} \quad \tilde{x} = x + \sigma \epsilon$

 \bigcirc

 \mathcal{X}

• Train EBMs with denoising score matching: $\|\nabla_x E_{\theta}(x) - \epsilon\|$

• By shaping the gradient $\nabla_x E_{\theta}(x)$, we can recover the true energy function (up to affine transformation)

Training EBMs with denoising score matching For molecules, we should use rigid transformation noises

Train the EBM so that $R \approx$ rotation caused by $\nabla_x E_{\theta}(x)$

The key step in SE(3) denoising score matching is to infer the rotation induced by the score $\nabla_x E_{\theta}(x)$

 \mathcal{X}

 $\bigcirc \tilde{x} = Rx + t$

Euler's rotation equation Infer rotation R from gradient $\nabla_x E_{\theta}(x)$ (force)

- The torque applied to the ligand $\tau = \sum_{i} (x_i x_i)$
- Angular velocity $\omega = I^{-1} \tau \Delta t$ for an infinitesimal time Δt
- Rotation matrix *R* is the exponential of the following matrix $W(\omega) = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$

$$(-\mu) \times \nabla_{x_i} E_{\theta}(x)$$

(Euler's rotation equation) Angular acceleration of the ligand $\alpha = I^{-1}\tau$, where I is the inertia matrix

Euler's rotation equation Infer rotation R from gradient $\nabla_x E_{\theta}(x)$ (force)

- The rotation operation can be further simplified to $Rx = e^{W(\omega)}x = x + c_1\omega \times x + c_2\omega \times (\omega \times x)$, where $c_1 = \sin \|\omega\| / \|\omega\|$ and $c_2 = (1 - \cos \|\omega\|) / \|\omega\|^2$
- The above rotation formula only requires vector cross product, which is very efficient.

The good news is that $W(\omega)$ is a skew symmetric matrix and its exponential has a closed form

11

Euler's rotation equation as a rotation layer A simple, yet equivariant way to predict rotations

- If we rotate a complex by Q, we have:
- Torque $\tau_Q = \sum_i (Qx_i Q\mu) \times Q\nabla_{x_i} E_{\theta}(x) = Q\tau$

SE(3) denoising score matching Training procedure

- Step 1: Sample rotation from SO(3) Gaussian distribution $\mathcal{N}_{SO(3)}$
 - Sample a random direction e from unit sphere
 - Sample an angle θ with density $f(\theta)$ (Isotropic Gaussian)
 - The score of $\mathcal{N}_{SO(3)}$ is $\nabla_{\theta} \log f(\theta) \cdot e$
- Step 2: Calculate the energy $E_{\theta}(x)$ and its score $\nabla_x E_{\theta}(x)$ (force)
 - Calculate the torque τ
 - Infer angular velocity $\omega = I^{-1} \tau \Delta t$
- Step 3: Compute SE(3) DSM Loss
- $\|\omega \nabla_{\theta} \log f(\theta) \cdot e\|$

Results: protein-ligand binding Log-likelihood is strongly correlated with binding affinity

- Training set: 5237 protein-ligand complexes in PDBBind refined set (without using binding affinity data)
- Test set: 285 complexes from CASF challenge evaluation set [1]. Measure the Pearson correlation between predicted and true affinity
- Supervised models are trained on ~18000 binding affinity data in PDBBind
- SE(3) DSM outperforms Gaussian noise DSM and other unsupervised models

Results: antibody-antigen binding Supervised models suffer from lack of binding affinity data

- Training set: 3416 complexes from Struc Antibody Database (SAbDab).
- Test set: 566 complexes from SAbDab tl binding affinity labels
- We compare with several biophysical po (unsupervised), and a supervised neural trained on only 100 binding affinity data
- We outperform supervised baseline beca can leverage more unlabeled antibody-a complexes

cture		Crystal
hat have	ZRANK	0.318
	ZRANK2	0.176
	RosettaDOCK	0.064
	PYDOCK	0.248
otentials network points	SIPPER	-0.138
	AP_PISA	0.323
	FIREDOCK	0.101
	FIREDOCK_AB	0.199
ause we antigen	CP_PIE	0.234
	NERE (ours)	0.340 .029
	- standard DSM	0.335.038
	Supervised NN	0.295.098

Visualization: binding energy attention What residues contribute the most?

•
$$E_{\theta}(x) = \sum_{i,j} \phi_o(h_i, h_j) [[D_{ij} < d]]$$

- $\phi_o(h_i, h_j)$ is the binding energy between two residues
- We plot $\phi_o(h_i, h_j)$ for all pairs within the distance threshold d
- Interestingly, the model pays the most attention to CDR-H3 and CDR-L3 residues, which are most critical to binding.

- - 35

Visualization: binding energy landscape How binding energy changes with respect to ligand orientation?

- -28600 - -28650 - -28700 - -28750 - -28800 - -28850 - -28900 - -28950 - -29000

- -33760 - -33840 - -33920 - -34000 - -34080 - -34160 - -34240 - -34320

Conclusion & acknowledgements Towards unsupervised models for protein-ligand binding

- 1. Formulate binding affinity prediction as a generative modeling problem
 - Train the generative model using SE(3) denoising score matching (DSM)
- 2. Propose a simple & equivariant rotation prediction module for SE(3) DSM
 - Embed Euler's rotation equation into neural networks (adding physical prior)

Acknowledgements:

Funding: Eric and Wendy Schmidt Center

Collaborators: Sisi Sarkizova, Xun Chen, Nir Hacohen, Caroline Uhler

Main contribution

