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Protein-ligand binding affinity prediction

Applications of equivariant neural networks to drug discovery
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Protein-ligand binding affinity prediction

A typical workflow: docking + scoring

Protein
structure Docking Scoring Binding
Ligand function affinity
structure A A
[ (e.g., AlphaFold, DiffDock) } Today’s focus
Outline of this talk

1. Formulate binding affinity prediction as a generative modeling problem

2. Train the generative model using SE(3) denoising score matching (DSM)

3. Propose a simple & equivariant rotation prediction module for SE(3) DSM
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Protein-ligand binding affinity prediction

Background: supervised & unsupervised models
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Protein-ligand binding affinity prediction

Background: connection between binding energy and log-likelihood

* Intuition: if a protein-ligand complex has a strong Energy
binding affinity, it will appear more often landscape

» The likelihood of a complex p(x) o exp(—Ey(x)),
where E,(x) is the energy of a complex

* Previous work (e.g., DrugScore2018 [1]) showed
log-likelihood is correlated with binding energy

. logp(x) = Zijlog p(D;; = d;;), where d;; is

the distance between atom pair (i, 7)

* Model is not expressive due to factorization

[1] Dittrich et al., “Converging a Knowledge-Based Scoring Function: DrugScore2018” J. Chem. Inf. Model. 2019, 59, 1, 509-521



Our approach: neural network energy models

Learn binding energy from crystal structures (data-driven)
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EBM architecture for protein-ligand binding

Requirement: E(X) is SE(3)-invariant and differentiable w.r.t. X

Pocket

Features A Coordinates X

[xla yla Zl]

[x29 y29 Z2]

\

X5 Vyns 2]

e [x, Vi, 3]

Emrem (x5, V), 2] /
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Training EBMs with denoising score matching

Standard approach: Gaussian noise

— X — X
e ~ N(0,I) € = ~ V_Ey(x)
. ) O ) O X

» ’ ) y X =X+ o¢€
f . R Train the EBM so that
Gaussian noise ~ —

» Train EBMs with denoising score matching: ||V, Ey(x) — €|

By shaping the gradient V _E,(x), we can recover the true energy
function (up to affine transformation)



Training EBMs with denoising score matching

For molecules, we should use rigid transformation noises

Random rigid —
transformation

) y X=Rx+t
Train the EBM so that —

R =~ rotation caused by V  E,(x)

JO X

Protein (A Ligand
* The key step in SE(3) denoising score matching is to infer
the rotation induced by the score V , E(x)



Euler’s rotation equation

Infer rotation R from gradient V E,(x) (force)

Protein Score — Gradient of the

Force — torgque
V Eg(x) energy = force

— rotation

~

Ligand
atom

. The torque applied to the ligand 7 = Z (x;, —pu) X V_Ey(x)
) l

« (Euler’s rotation equation) Angular acceleration of the ligand a = [ _17, where [ is the inertia matrix

» Angular velocity @ = I~'zAt for an infinitesimal time At
0 —W, Wy
» Rotation matrix R is the exponential of the following matrix W(w) = | w. 0 —wy,
—W, Wy 0




Euler’s rotation equation

Infer rotation R from gradient V E,(x) (force)

Score I Gradient of the
V Eg(x) energy = force

Protein

~

Ligand
atom

Force — torgque
— rotation

« The good news is that W(w) is a skew symmetric matrix and its exponential has a closed form

« The rotation operation can be further simplified to Rx = e
where ¢, = sin ||@||/||@]|| and ¢, = (1 — cos ||@]|])/||@]|?

W(w)

X=X+ coXx+c,wX(wXx),

 The above rotation formula only requires vector cross product, which is very efficient.
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Euler’s rotation equation as a rotation layer

A simple, yet equivariant way to predict rotations

Protein

Ligand
atom

p
e

Score I Gradient of the
V Eg(x) energy = force

Force automatically
rotates by 45°

l< Force — torgque
— rotation

T~
If we rotate a complex by O, we have:

Torque 7 = ). (Qx; = Q) X @V, Ey(x) = Qt
Inertia matrix /[, = 010!

Angular velocity @, = IQITQAt = Qw

Rotation matrix R, = OR
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SE(3) denoising score matching

Training procedure
» Step 1: Sample rotation from SO(3) Gaussian distribution g3

« Sample a random direction e from unit sphere
« Sample an angle @ with density f(€) (Isotropic Gaussian)

» The score of W g3 is Vglog f(0) - e

» Step 2: Calculate the energy Ey(x) and its score V. E,(x) (force)
Randomrigid -

transformation

e (Calculate the torque 7 0 =0e

\.

» Infer angular velocity @ = I~ 17At

Protein - Step 3: Compute SE(3) DSM Loss

* |l = Vylog f(0) - e]




Results: protein-ligand binding
Log-likelihood is strongly correlated with binding affinity

* TJraining set: 5237 protein-ligand complexes In Supervised methods
PDBBInd refined set (without using binding
affinity data) TankBind 0.82
IGN 0.84
* Test set: 285 complexes from CASF challenge KDeep 0.824

evaluation set [1]. Measure the Pearson

: : C 0 0.2 0.4 0.6 0.8 1
correlation between predicted and true affinity

Unsupervised methods
e Supervised models are trained on ~18000

binding affinity data in PDBBind ours (SE) DSM)
MM/GBSA

0.656
0.647

* SE(3) DSM outperforms Gaussian noise DSM  ours (Gaussian DSM) 0.64
and other unsupervised models Autodock Vina 0.604
DrugScore2018 0.602

0 0.2 0.4 0.6 0.8 1

Pearson Correlation



Results: antibody-antigen binding

Supervised models suffer from lack of binding affinity data

* Training set: 3416 complexes from Structure
Antibody Database (SAbDab).

* TJest set: 566 complexes from SAbDab that have
binding affinity labels

 We compare with several biophysical potentials
(unsupervised), and a supervised neural network
trained on only 100 binding affinity data points

* \We outperform supervised baseline because we
can leverage more unlabeled antibody-antigen
complexes

Crystal
/ZRANK 0.318
/RANK?2 0.176
RosettaDOCK 0.064
PYDOCK 0.248
SIPPER -0.138
AP_PISA 0.323
FIREDOCK 0.101
FIREDOCK_AB 0.199
CP_PIE 0.234
NERE (ours) 0.340 9
- standard DSM  0.335 33
Supervised NN 0.295 gog
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Visualization: binding energy attention

What residues contribute the most?

. Ey(x) = Zij(ﬁo(hi’ hI[D;; < d]

» ¢,(h;, h)) is the binding energy
between two residues

. We plot ¢,,(h;, h;) for all pairs
within the distance threshold d

* |nterestingly, the model pays the
most attention to CDR-H3 and

CDR-L3 residues, which are
most critical to binding.

Epitope residues
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Visualization: binding energy landscape

How binding energy changes with respect to ligand orientation?
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Conclusion & acknowledgements

Towards unsupervised models for protein-ligand binding

Main contribution

1. Formulate binding affinity prediction as a generative modeling problem
* Train the generative model using SE(3) denoising score matching (DSM)

2. Propose a simple & equivariant rotation prediction module for SE(3) DSM

\_

 Embed Euler’s rotation equation into neural networks (adding physical prior)
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